polish code with new pre-commit rule (#2923)

This commit is contained in:
Zero Rains
2025-07-19 23:19:27 +08:00
committed by GitHub
parent b8676d71a8
commit 25698d56d1
424 changed files with 14307 additions and 13518 deletions

View File

@@ -13,6 +13,7 @@
# See the License for the specific language governing permissions and
# limitations under the License.
"""
from typing import Dict, Optional
import paddle
@@ -23,32 +24,51 @@ from fastdeploy.platforms import current_platform
if current_platform.is_iluvatar():
from fastdeploy.model_executor.ops.iluvatar import (
get_padding_offset, save_output, set_stop_value_multi_ends,
step_paddle, update_inputs)
get_padding_offset,
save_output,
set_stop_value_multi_ends,
step_paddle,
update_inputs,
)
elif current_platform.is_gcu():
from fastdeploy.model_executor.ops.gcu import (get_padding_offset,
save_output,
set_stop_value_multi_ends,
update_inputs)
from fastdeploy.model_executor.ops.gcu import (
get_padding_offset,
save_output,
set_stop_value_multi_ends,
update_inputs,
)
elif current_platform.is_dcu():
from fastdeploy.model_executor.ops.gpu import (get_padding_offset,
save_output,
set_stop_value_multi_ends,
step_paddle, update_inputs)
from fastdeploy.model_executor.ops.gpu import (
get_padding_offset,
save_output,
set_stop_value_multi_ends,
step_paddle,
update_inputs,
)
else:
from fastdeploy.model_executor.ops.gpu import (
get_padding_offset, save_output, save_output_topk, set_stop_value_multi_ends,
speculate_clear_accept_nums, speculate_get_output_padding_offset,
speculate_get_padding_offset, speculate_get_seq_lens_output,
speculate_save_output, speculate_set_value_by_flags_and_idx,
speculate_step_paddle, speculate_step_system_cache,
speculate_update_v3, step_paddle, step_system_cache, update_inputs,
step_reschedule)
get_padding_offset,
save_output,
save_output_topk,
set_stop_value_multi_ends,
speculate_clear_accept_nums,
speculate_get_output_padding_offset,
speculate_get_padding_offset,
speculate_get_seq_lens_output,
speculate_save_output,
speculate_set_value_by_flags_and_idx,
speculate_step_paddle,
speculate_step_system_cache,
speculate_update_v3,
step_paddle,
step_reschedule,
step_system_cache,
update_inputs,
)
from fastdeploy.worker.output import (ModelOutputData, ModelRunnerOutput,
SamplerOutput)
from fastdeploy.worker.output import ModelOutputData, ModelRunnerOutput, SamplerOutput
DISABLE_RECOVER = (envs.FD_DISABLED_RECOVER == "1")
DISABLE_RECOVER = envs.FD_DISABLED_RECOVER == "1"
def pre_process(
@@ -118,47 +138,62 @@ def pre_process(
batch_id_per_token,
cu_seqlens_q,
cu_seqlens_k,
) = get_padding_offset(input_ids, cum_offsets_now, token_num,
seq_lens_this_time)
return (ids_remove_padding, cum_offsets, batch_id_per_token, cu_seqlens_q,
cu_seqlens_k, output_cum_offsets, output_padding_offset)
) = get_padding_offset(input_ids, cum_offsets_now, token_num, seq_lens_this_time)
return (
ids_remove_padding,
cum_offsets,
batch_id_per_token,
cu_seqlens_q,
cu_seqlens_k,
output_cum_offsets,
output_padding_offset,
)
def post_process_normal(sampler_output: SamplerOutput,
model_output: ModelOutputData,
save_each_rank: bool = False,
skip_save_output: bool = False) -> ModelRunnerOutput:
""" Post-processing steps after completing a single token generation. """
def post_process_normal(
sampler_output: SamplerOutput,
model_output: ModelOutputData,
save_each_rank: bool = False,
skip_save_output: bool = False,
) -> ModelRunnerOutput:
"""Post-processing steps after completing a single token generation."""
# handle vl:
if model_output.enable_thinking:
exists_think_end = sampler_output.sampled_token_ids == model_output.think_end_id
paddle.assign(
paddle.where(
exists_think_end,
model_output.need_think_end - 1,
model_output.need_think_end,
), model_output.need_think_end)
paddle.where(
exists_think_end,
model_output.need_think_end - 1,
model_output.need_think_end,
),
model_output.need_think_end,
)
paddle.assign(
paddle.where(
model_output.need_think_end.cast("bool"),
model_output.reasoning_index - 1,
model_output.reasoning_index,
), model_output.reasoning_index)
),
model_output.reasoning_index,
)
stop_wo_think = (
(sampler_output.sampled_token_ids == model_output.eos_token_id) |
(model_output.reasoning_index == 0)) & (
model_output.need_think_end > 0)
sampler_output.sampled_token_ids = paddle.where(stop_wo_think,
model_output.think_end_id,
sampler_output.sampled_token_ids)
(sampler_output.sampled_token_ids == model_output.eos_token_id) | (model_output.reasoning_index == 0)
) & (model_output.need_think_end > 0)
sampler_output.sampled_token_ids = paddle.where(
stop_wo_think,
model_output.think_end_id,
sampler_output.sampled_token_ids,
)
paddle.assign(
paddle.where(
stop_wo_think,
model_output.need_think_end - 1,
model_output.need_think_end,
), model_output.need_think_end)
),
model_output.need_think_end,
)
# 1. Set stop value
paddle.assign(
paddle.where(
@@ -168,17 +203,20 @@ def post_process_normal(sampler_output: SamplerOutput,
),
model_output.step_idx,
)
length_cond = paddle.greater_equal(model_output.step_idx,
model_output.max_dec_len)
length_cond = paddle.greater_equal(model_output.step_idx, model_output.max_dec_len)
paddle.assign(
paddle.logical_or(model_output.stop_flags, length_cond),
model_output.stop_flags,
)
# TODO(gongshaotian): Add use_stop_seqs
set_stop_value_multi_ends(sampler_output.sampled_token_ids, model_output.stop_flags,
model_output.seq_lens_this_time,
model_output.eos_token_id,
model_output.next_tokens, False) # multi ends
set_stop_value_multi_ends(
sampler_output.sampled_token_ids,
model_output.stop_flags,
model_output.seq_lens_this_time,
model_output.eos_token_id,
model_output.next_tokens,
False,
) # multi ends
# 2. Update the input buffer of the model
with paddle.framework._no_check_dy2st_diff():
@@ -239,8 +277,7 @@ def post_process_specualate(model_output, save_each_rank: bool = False, skip_sav
save_each_rank,
)
speculate_clear_accept_nums(model_output.accept_num,
model_output.seq_lens_decoder)
speculate_clear_accept_nums(model_output.accept_num, model_output.seq_lens_decoder)
# Update pre_ids through accept tokens
@@ -256,17 +293,18 @@ def post_process_specualate(model_output, save_each_rank: bool = False, skip_sav
)
def post_process(sampler_output: SamplerOutput,
model_output: ModelOutputData,
save_each_rank: bool = False,
speculative_decoding: bool = False,
skip_save_output: bool = False) -> None:
""" Post-processing steps after completing a single token generation. """
def post_process(
sampler_output: SamplerOutput,
model_output: ModelOutputData,
save_each_rank: bool = False,
speculative_decoding: bool = False,
skip_save_output: bool = False,
) -> None:
"""Post-processing steps after completing a single token generation."""
if speculative_decoding:
post_process_specualate(model_output, save_each_rank, skip_save_output)
else:
post_process_normal(sampler_output, model_output, save_each_rank,
skip_save_output)
post_process_normal(sampler_output, model_output, save_each_rank, skip_save_output)
def step_cuda(
@@ -280,33 +318,32 @@ def step_cuda(
TODO(gongshaotian): normalization name
"""
if speculative_config.method is not None:
if enable_prefix_caching:
speculate_step_system_cache(
share_inputs['stop_flags'],
share_inputs["stop_flags"],
share_inputs["seq_lens_this_time"],
share_inputs['step_seq_lens_encoder'],
share_inputs['step_seq_lens_decoder'],
share_inputs['seq_lens_encoder'],
share_inputs['seq_lens_decoder'],
share_inputs["step_seq_lens_encoder"],
share_inputs["step_seq_lens_decoder"],
share_inputs["seq_lens_encoder"],
share_inputs["seq_lens_decoder"],
share_inputs["block_tables"],
share_inputs['encoder_block_lens'],
share_inputs["encoder_block_lens"],
share_inputs["is_block_step"],
share_inputs['step_block_list'],
share_inputs['step_lens'],
share_inputs['recover_block_list'],
share_inputs['recover_lens'],
share_inputs['need_block_list'],
share_inputs['need_block_len'],
share_inputs['used_list_len'],
share_inputs['free_list'],
share_inputs['free_list_len'],
share_inputs['input_ids'],
share_inputs['pre_ids'],
share_inputs['step_idx'],
share_inputs['next_tokens'],
share_inputs['first_token_ids'],
share_inputs["step_block_list"],
share_inputs["step_lens"],
share_inputs["recover_block_list"],
share_inputs["recover_lens"],
share_inputs["need_block_list"],
share_inputs["need_block_len"],
share_inputs["used_list_len"],
share_inputs["free_list"],
share_inputs["free_list_len"],
share_inputs["input_ids"],
share_inputs["pre_ids"],
share_inputs["step_idx"],
share_inputs["next_tokens"],
share_inputs["first_token_ids"],
share_inputs["accept_num"],
block_size,
enc_dec_block_num,
@@ -314,28 +351,28 @@ def step_cuda(
)
else:
speculate_step_paddle(
share_inputs['stop_flags'],
share_inputs["stop_flags"],
share_inputs["seq_lens_this_time"],
share_inputs['step_seq_lens_encoder'],
share_inputs['seq_lens_encoder'],
share_inputs['seq_lens_decoder'],
share_inputs["step_seq_lens_encoder"],
share_inputs["seq_lens_encoder"],
share_inputs["seq_lens_decoder"],
share_inputs["block_tables"],
share_inputs['encoder_block_lens'],
share_inputs["encoder_block_lens"],
share_inputs["is_block_step"],
share_inputs['step_block_list'],
share_inputs['step_lens'],
share_inputs['recover_block_list'],
share_inputs['recover_lens'],
share_inputs['need_block_list'],
share_inputs['need_block_len'],
share_inputs['used_list_len'],
share_inputs['free_list'],
share_inputs['free_list_len'],
share_inputs['input_ids'],
share_inputs['pre_ids'],
share_inputs['step_idx'],
share_inputs['next_tokens'],
share_inputs['first_token_ids'],
share_inputs["step_block_list"],
share_inputs["step_lens"],
share_inputs["recover_block_list"],
share_inputs["recover_lens"],
share_inputs["need_block_list"],
share_inputs["need_block_len"],
share_inputs["used_list_len"],
share_inputs["free_list"],
share_inputs["free_list_len"],
share_inputs["input_ids"],
share_inputs["pre_ids"],
share_inputs["step_idx"],
share_inputs["next_tokens"],
share_inputs["first_token_ids"],
share_inputs["accept_num"],
block_size,
enc_dec_block_num,
@@ -344,20 +381,32 @@ def step_cuda(
else:
if enable_prefix_caching:
step_system_cache(
share_inputs["stop_flags"], share_inputs["seq_lens_this_time"],
share_inputs["stop_flags"],
share_inputs["seq_lens_this_time"],
share_inputs["step_seq_lens_encoder"],
share_inputs["step_seq_lens_decoder"],
share_inputs["seq_lens_encoder"],
share_inputs["seq_lens_decoder"], share_inputs["block_tables"],
share_inputs["seq_lens_decoder"],
share_inputs["block_tables"],
share_inputs["encoder_block_lens"],
share_inputs["is_block_step"], share_inputs["step_block_list"],
share_inputs["step_lens"], share_inputs["recover_block_list"],
share_inputs["recover_lens"], share_inputs["need_block_list"],
share_inputs["need_block_len"], share_inputs["used_list_len"],
share_inputs["free_list"], share_inputs["free_list_len"],
share_inputs["input_ids"], share_inputs["pre_ids"],
share_inputs["step_idx"], share_inputs["next_tokens"],
share_inputs["first_token_ids"], block_size, enc_dec_block_num)
share_inputs["is_block_step"],
share_inputs["step_block_list"],
share_inputs["step_lens"],
share_inputs["recover_block_list"],
share_inputs["recover_lens"],
share_inputs["need_block_list"],
share_inputs["need_block_len"],
share_inputs["used_list_len"],
share_inputs["free_list"],
share_inputs["free_list_len"],
share_inputs["input_ids"],
share_inputs["pre_ids"],
share_inputs["step_idx"],
share_inputs["next_tokens"],
share_inputs["first_token_ids"],
block_size,
enc_dec_block_num,
)
elif DISABLE_RECOVER:
step_reschedule(
share_inputs["stop_flags"],
@@ -414,19 +463,22 @@ def step_cuda(
)
def rebuild_padding(tmp_out: paddle.Tensor,
cum_offsets: paddle.Tensor,
seq_len_this_time: paddle.Tensor,
seq_lens_decoder: paddle.Tensor,
seq_lens_encoder: paddle.Tensor,
output_padding_offset: Optional[paddle.Tensor] = None,
max_input_length: Optional[int] = None):
def rebuild_padding(
tmp_out: paddle.Tensor,
cum_offsets: paddle.Tensor,
seq_len_this_time: paddle.Tensor,
seq_lens_decoder: paddle.Tensor,
seq_lens_encoder: paddle.Tensor,
output_padding_offset: Optional[paddle.Tensor] = None,
max_input_length: Optional[int] = None,
):
"""
Args:
Returns:
"""
if current_platform.is_cuda():
from fastdeploy.model_executor.ops.gpu import rebuild_padding
hidden_states = rebuild_padding(
tmp_out,
cum_offsets,
@@ -438,6 +490,7 @@ def rebuild_padding(tmp_out: paddle.Tensor,
)
elif current_platform.is_iluvatar():
from fastdeploy.model_executor.ops.iluvatar import rebuild_padding
hidden_states = rebuild_padding(
tmp_out,
cum_offsets,
@@ -449,6 +502,7 @@ def rebuild_padding(tmp_out: paddle.Tensor,
)
elif current_platform.is_gcu():
from fastdeploy.model_executor.ops.gcu import rebuild_padding
hidden_states = rebuild_padding(
tmp_out,
cum_offsets,
@@ -460,6 +514,7 @@ def rebuild_padding(tmp_out: paddle.Tensor,
)
elif current_platform.is_cpu():
from fastdeploy.model_executor.ops.cpu import rebuild_padding_cpu
hidden_states = rebuild_padding_cpu(
tmp_out,
cum_offsets,