mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-05 16:48:03 +08:00
polish code with new pre-commit rule (#2923)
This commit is contained in:
@@ -38,15 +38,14 @@ def check_tensor_parallel_prerequisites(
|
||||
"""check_tensor_parallel_prerequisites"""
|
||||
if fd_config.parallel_config.tensor_parallel_size > 1:
|
||||
tensor_parallel_map = cls._get_tensor_parallel_mappings(
|
||||
fd_config.model_config.pretrained_config, is_split=True)
|
||||
fd_config.model_config.pretrained_config, is_split=True
|
||||
)
|
||||
if not tensor_parallel_map:
|
||||
logger.error(
|
||||
"filtered_quant_map should not be empty. \
|
||||
parallel splitting required, but _get_tensor_parallel_mappings is not implemented."
|
||||
)
|
||||
filtered_tp_keys = cls._resolve_prefix_keys(
|
||||
tensor_parallel_map.keys(), safetensor_keys
|
||||
)
|
||||
filtered_tp_keys = cls._resolve_prefix_keys(tensor_parallel_map.keys(), safetensor_keys)
|
||||
for k, v in filtered_tp_keys.items():
|
||||
tensor_parallel_filtered_map[v] = tensor_parallel_map.pop(k)
|
||||
if not tensor_parallel_filtered_map:
|
||||
@@ -176,9 +175,7 @@ def build_expanded_keys(
|
||||
if start_layer < 0:
|
||||
continue
|
||||
for layer_id in range(start_layer, num_layers):
|
||||
for export_id in range(
|
||||
text_num_experts, text_num_experts + img_num_experts
|
||||
):
|
||||
for export_id in range(text_num_experts, text_num_experts + img_num_experts):
|
||||
update_final_actions(
|
||||
{
|
||||
LayerIdPlaceholder.MOE_LAYER_ID.value: layer_id,
|
||||
@@ -188,10 +185,7 @@ def build_expanded_keys(
|
||||
key,
|
||||
action,
|
||||
)
|
||||
elif (
|
||||
LayerIdPlaceholder.MOE_LAYER_ID.value in placeholders
|
||||
and len(placeholders) == 1
|
||||
):
|
||||
elif LayerIdPlaceholder.MOE_LAYER_ID.value in placeholders and len(placeholders) == 1:
|
||||
if start_layer < 0:
|
||||
continue
|
||||
for layer_id in range(start_layer, num_layers):
|
||||
@@ -222,8 +216,7 @@ def gqa_qkv_split_func(
|
||||
|
||||
def get_shape(tensor):
|
||||
"""get_shape"""
|
||||
return tensor.get_shape() if hasattr(tensor,
|
||||
"get_shape") else tensor.shape
|
||||
return tensor.get_shape() if hasattr(tensor, "get_shape") else tensor.shape
|
||||
|
||||
def slice_tensor(tensor, start, end):
|
||||
"""slice_tensor"""
|
||||
@@ -251,10 +244,7 @@ def gqa_qkv_split_func(
|
||||
size = shape[-1] if is_column else shape[0]
|
||||
block_size = size // degree
|
||||
if hasattr(tensor, "get_shape"):
|
||||
return [
|
||||
slice_tensor(tensor, i * block_size, (i + 1) * block_size)
|
||||
for i in range(degree)
|
||||
]
|
||||
return [slice_tensor(tensor, i * block_size, (i + 1) * block_size) for i in range(degree)]
|
||||
else:
|
||||
if isinstance(x, paddle.Tensor):
|
||||
if is_column:
|
||||
@@ -342,8 +332,8 @@ def gqa_qkv_merge_func(num_attention_heads, num_key_value_heads, head_dim):
|
||||
def fn(weight_list, is_column=True):
|
||||
"""fn"""
|
||||
tensor_parallel_degree = len(weight_list)
|
||||
num_attention_heads = num_attention_heads // tensor_parallel_degree # noqa: F823
|
||||
num_key_value_heads = num_key_value_heads // tensor_parallel_degree # noqa: F823
|
||||
local_num_attention_heads = num_attention_heads // tensor_parallel_degree
|
||||
local_num_key_value_heads = num_key_value_heads // tensor_parallel_degree
|
||||
|
||||
is_paddle_tensor = not isinstance(weight_list[0], np.ndarray)
|
||||
|
||||
@@ -351,8 +341,7 @@ def gqa_qkv_merge_func(num_attention_heads, num_key_value_heads, head_dim):
|
||||
"""
|
||||
get_shape
|
||||
"""
|
||||
return tensor.get_shape() if hasattr(tensor,
|
||||
"get_shape") else tensor.shape
|
||||
return tensor.get_shape() if hasattr(tensor, "get_shape") else tensor.shape
|
||||
|
||||
def slice_tensor(tensor, start, end):
|
||||
"""
|
||||
@@ -368,9 +357,9 @@ def gqa_qkv_merge_func(num_attention_heads, num_key_value_heads, head_dim):
|
||||
q_list, k_list, v_list = [], [], []
|
||||
|
||||
for weight in weight_list:
|
||||
q_end = num_attention_heads * head_dim
|
||||
k_end = q_end + num_key_value_heads * head_dim
|
||||
v_end = k_end + num_key_value_heads * head_dim
|
||||
q_end = local_num_attention_heads * head_dim
|
||||
k_end = q_end + local_num_key_value_heads * head_dim
|
||||
v_end = k_end + local_num_key_value_heads * head_dim
|
||||
|
||||
q = slice_tensor(weight, 0, q_end)
|
||||
k = slice_tensor(weight, q_end, k_end)
|
||||
|
Reference in New Issue
Block a user