mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-06 00:57:33 +08:00
polish code with new pre-commit rule (#2923)
This commit is contained in:
@@ -25,12 +25,12 @@ from paddleformers.utils.log import logger
|
||||
|
||||
from fastdeploy.config import FDConfig
|
||||
from fastdeploy.model_executor.forward_meta import ForwardMeta
|
||||
from fastdeploy.model_executor.graph_optimization.decorator import \
|
||||
support_graph_optimization
|
||||
from fastdeploy.model_executor.graph_optimization.decorator import (
|
||||
support_graph_optimization,
|
||||
)
|
||||
from fastdeploy.model_executor.layers.attention.attention import Attention
|
||||
from fastdeploy.model_executor.layers.embeddings import VocabParallelEmbedding
|
||||
from fastdeploy.model_executor.layers.linear import (QKVParallelLinear,
|
||||
RowParallelLinear)
|
||||
from fastdeploy.model_executor.layers.linear import QKVParallelLinear, RowParallelLinear
|
||||
from fastdeploy.model_executor.layers.lm_head import ParallelLMHead
|
||||
from fastdeploy.model_executor.layers.normalization import RMSNorm
|
||||
from fastdeploy.model_executor.models.model_base import ModelForCasualLM
|
||||
@@ -38,52 +38,51 @@ from fastdeploy.model_executor.models.qwen2 import Qwen2DecoderLayer, Qwen2MLP
|
||||
|
||||
|
||||
class Qwen3MLP(Qwen2MLP):
|
||||
"""
|
||||
"""
|
||||
""" """
|
||||
|
||||
pass
|
||||
|
||||
|
||||
class Qwen3Attention(nn.Layer):
|
||||
"""
|
||||
"""
|
||||
""" """
|
||||
|
||||
def __init__(self,
|
||||
fd_config: FDConfig,
|
||||
layer_id: int,
|
||||
prefix: str = "") -> None:
|
||||
def __init__(self, fd_config: FDConfig, layer_id: int, prefix: str = "") -> None:
|
||||
super().__init__()
|
||||
|
||||
self.fd_config = fd_config
|
||||
self.head_dim = fd_config.model_config.head_dim
|
||||
|
||||
self.qkv_proj = QKVParallelLinear(fd_config,
|
||||
prefix=f"{prefix}.qkv_proj",
|
||||
with_bias=False)
|
||||
self.qkv_proj = QKVParallelLinear(fd_config, prefix=f"{prefix}.qkv_proj", with_bias=False)
|
||||
nranks = fd_config.parallel_config.tensor_parallel_size
|
||||
|
||||
self.o_proj = RowParallelLinear(
|
||||
fd_config,
|
||||
prefix=f"{prefix}.o_proj",
|
||||
input_size=fd_config.model_config.head_dim *
|
||||
fd_config.model_config.num_attention_heads,
|
||||
input_size=fd_config.model_config.head_dim * fd_config.model_config.num_attention_heads,
|
||||
output_size=fd_config.model_config.hidden_size,
|
||||
)
|
||||
|
||||
self.attn = Attention(fd_config,
|
||||
layer_id=layer_id,
|
||||
prefix=prefix,
|
||||
use_neox_rotary_style=True)
|
||||
self.attn = Attention(
|
||||
fd_config,
|
||||
layer_id=layer_id,
|
||||
prefix=prefix,
|
||||
use_neox_rotary_style=True,
|
||||
)
|
||||
|
||||
self.q_norm = RMSNorm(fd_config,
|
||||
hidden_size=self.head_dim,
|
||||
eps=fd_config.model_config.rms_norm_eps,
|
||||
prefix=f"{prefix}.q_norm",
|
||||
begin_norm_axis=2)
|
||||
self.k_norm = RMSNorm(fd_config,
|
||||
hidden_size=self.head_dim,
|
||||
eps=fd_config.model_config.rms_norm_eps,
|
||||
prefix=f"{prefix}.k_norm",
|
||||
begin_norm_axis=2)
|
||||
self.q_norm = RMSNorm(
|
||||
fd_config,
|
||||
hidden_size=self.head_dim,
|
||||
eps=fd_config.model_config.rms_norm_eps,
|
||||
prefix=f"{prefix}.q_norm",
|
||||
begin_norm_axis=2,
|
||||
)
|
||||
self.k_norm = RMSNorm(
|
||||
fd_config,
|
||||
hidden_size=self.head_dim,
|
||||
eps=fd_config.model_config.rms_norm_eps,
|
||||
prefix=f"{prefix}.k_norm",
|
||||
begin_norm_axis=2,
|
||||
)
|
||||
|
||||
nranks = fd_config.parallel_config.tensor_parallel_size
|
||||
num_kv_heads_replicas = max(1, nranks // fd_config.model_config.num_key_value_heads)
|
||||
@@ -91,8 +90,7 @@ class Qwen3Attention(nn.Layer):
|
||||
self.kv_size = fd_config.model_config.num_key_value_heads * self.head_dim * num_kv_heads_replicas // nranks
|
||||
|
||||
def load_state_dict(self, state_dict):
|
||||
"""
|
||||
"""
|
||||
""" """
|
||||
self.qkv_proj.load_state_dict(state_dict)
|
||||
self.o_proj.load_state_dict(state_dict)
|
||||
self.q_norm.load_state_dict(state_dict)
|
||||
@@ -103,20 +101,16 @@ class Qwen3Attention(nn.Layer):
|
||||
forward_meta: ForwardMeta,
|
||||
hidden_states: paddle.Tensor,
|
||||
):
|
||||
"""
|
||||
"""
|
||||
""" """
|
||||
qkv_out = self.qkv_proj(hidden_states)
|
||||
# origin_qkv_out = qkv_out
|
||||
q, k, v = qkv_out.split([self.q_size, self.kv_size, self.kv_size],
|
||||
axis=-1)
|
||||
q, k, v = qkv_out.split([self.q_size, self.kv_size, self.kv_size], axis=-1)
|
||||
|
||||
q_by_head = q.reshape(
|
||||
[*q.shape[:-1], q.shape[-1] // self.head_dim, self.head_dim])
|
||||
q_by_head = q.reshape([*q.shape[:-1], q.shape[-1] // self.head_dim, self.head_dim])
|
||||
q_by_head = self.q_norm(q_by_head)
|
||||
q = q_by_head.reshape(q.shape)
|
||||
|
||||
k_by_head = k.reshape(
|
||||
[*k.shape[:-1], k.shape[-1] // self.head_dim, self.head_dim])
|
||||
k_by_head = k.reshape([*k.shape[:-1], k.shape[-1] // self.head_dim, self.head_dim])
|
||||
k_by_head = self.k_norm(k_by_head)
|
||||
k = k_by_head.reshape(k.shape)
|
||||
|
||||
@@ -131,8 +125,7 @@ class Qwen3Attention(nn.Layer):
|
||||
|
||||
|
||||
class Qwen3DecoderLayer(Qwen2DecoderLayer):
|
||||
"""
|
||||
"""
|
||||
""" """
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
@@ -140,16 +133,13 @@ class Qwen3DecoderLayer(Qwen2DecoderLayer):
|
||||
prefix: str = "",
|
||||
) -> None:
|
||||
super().__init__(fd_config, prefix)
|
||||
layer_id = int(prefix.split(sep='.')[-1])
|
||||
self.self_attn = Qwen3Attention(fd_config=fd_config,
|
||||
layer_id=layer_id,
|
||||
prefix=f"{prefix}.self_attn")
|
||||
layer_id = int(prefix.split(sep=".")[-1])
|
||||
self.self_attn = Qwen3Attention(fd_config=fd_config, layer_id=layer_id, prefix=f"{prefix}.self_attn")
|
||||
|
||||
|
||||
@support_graph_optimization
|
||||
class Qwen3Model(nn.Layer):
|
||||
"""
|
||||
"""
|
||||
""" """
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
@@ -174,12 +164,15 @@ class Qwen3Model(nn.Layer):
|
||||
prefix=(f"{fd_config.model_config.pretrained_config.prefix_name}.embed_tokens"),
|
||||
)
|
||||
|
||||
self.layers = nn.LayerList([
|
||||
Qwen3DecoderLayer(
|
||||
fd_config=fd_config,
|
||||
prefix=f"{fd_config.model_config.pretrained_config.prefix_name}.layers.{i}")
|
||||
for i in range(self.num_layers)
|
||||
])
|
||||
self.layers = nn.LayerList(
|
||||
[
|
||||
Qwen3DecoderLayer(
|
||||
fd_config=fd_config,
|
||||
prefix=f"{fd_config.model_config.pretrained_config.prefix_name}.layers.{i}",
|
||||
)
|
||||
for i in range(self.num_layers)
|
||||
]
|
||||
)
|
||||
|
||||
self.norm = RMSNorm(
|
||||
fd_config,
|
||||
@@ -208,15 +201,13 @@ class Qwen3Model(nn.Layer):
|
||||
ids_remove_padding: paddle.Tensor,
|
||||
forward_meta: ForwardMeta,
|
||||
):
|
||||
"""
|
||||
"""
|
||||
""" """
|
||||
hidden_states = self.embed_tokens(ids_remove_padding=ids_remove_padding)
|
||||
|
||||
residual = None
|
||||
|
||||
for i in range(self.num_layers):
|
||||
hidden_states, residual = self.layers[i](forward_meta,
|
||||
hidden_states, residual)
|
||||
hidden_states, residual = self.layers[i](forward_meta, hidden_states, residual)
|
||||
|
||||
hidden_states = hidden_states + residual
|
||||
|
||||
@@ -250,8 +241,7 @@ class Qwen3ForCausalLM(ModelForCasualLM):
|
||||
|
||||
@classmethod
|
||||
def name(self):
|
||||
"""
|
||||
"""
|
||||
""" """
|
||||
return "Qwen3ForCausalLM"
|
||||
|
||||
@paddle.no_grad()
|
||||
@@ -266,17 +256,15 @@ class Qwen3ForCausalLM(ModelForCasualLM):
|
||||
"""
|
||||
self.model.load_state_dict(state_dict)
|
||||
if self.tie_word_embeddings:
|
||||
self.lm_head.linear.weight.set_value(
|
||||
self.model.embed_tokens.embeddings.weight.transpose([1, 0]))
|
||||
self.lm_head.linear.weight.set_value(self.model.embed_tokens.embeddings.weight.transpose([1, 0]))
|
||||
else:
|
||||
self.lm_head.load_state_dict(state_dict)
|
||||
|
||||
def compute_logits(self, hidden_states: paddle.Tensor):
|
||||
"""
|
||||
"""
|
||||
""" """
|
||||
logits = self.lm_head(hidden_states)
|
||||
logits = paddle.cast(logits, paddle.float32)
|
||||
logits[:, self.ori_vocab_size:] = -float("inf")
|
||||
logits[:, self.ori_vocab_size :] = -float("inf")
|
||||
|
||||
return logits
|
||||
|
||||
@@ -285,10 +273,8 @@ class Qwen3ForCausalLM(ModelForCasualLM):
|
||||
ids_remove_padding: paddle.Tensor,
|
||||
forward_meta: ForwardMeta,
|
||||
):
|
||||
"""
|
||||
"""
|
||||
hidden_states = self.model(ids_remove_padding=ids_remove_padding,
|
||||
forward_meta=forward_meta)
|
||||
""" """
|
||||
hidden_states = self.model(ids_remove_padding=ids_remove_padding, forward_meta=forward_meta)
|
||||
|
||||
return hidden_states
|
||||
|
||||
@@ -309,8 +295,7 @@ class Qwen3PretrainedModel(PretrainedModel):
|
||||
@classmethod
|
||||
def _get_tensor_parallel_mappings(cls, config, is_split=True):
|
||||
|
||||
from paddleformers.transformers.conversion_utils import \
|
||||
split_or_merge_func
|
||||
from paddleformers.transformers.conversion_utils import split_or_merge_func
|
||||
|
||||
fn = split_or_merge_func(
|
||||
is_split=is_split,
|
||||
@@ -326,34 +311,26 @@ class Qwen3PretrainedModel(PretrainedModel):
|
||||
# Row Linear
|
||||
"lm_head.weight": partial(fn, is_column=True),
|
||||
"embed_tokens.weight": partial(fn, is_column=False),
|
||||
"layers.0.self_attn.o_proj.weight": partial(fn,
|
||||
is_column=False),
|
||||
"layers.0.self_attn.o_proj.weight": partial(fn, is_column=False),
|
||||
"layers.0.mlp.down_proj.weight": partial(fn, is_column=False),
|
||||
}
|
||||
|
||||
# Column Linear
|
||||
|
||||
base_actions["layers.0.self_attn.q_proj.weight"] = partial(
|
||||
fn, is_column=True)
|
||||
base_actions["layers.0.self_attn.q_proj.bias"] = partial(
|
||||
fn, is_column=True)
|
||||
base_actions["layers.0.self_attn.q_proj.weight"] = partial(fn, is_column=True)
|
||||
base_actions["layers.0.self_attn.q_proj.bias"] = partial(fn, is_column=True)
|
||||
# if we have enough num_key_value_heads to split, then split it.
|
||||
if config.num_key_value_heads % config.tensor_parallel_degree == 0:
|
||||
base_actions["layers.0.self_attn.k_proj.weight"] = partial(
|
||||
fn, is_column=True)
|
||||
base_actions["layers.0.self_attn.v_proj.weight"] = partial(
|
||||
fn, is_column=True)
|
||||
base_actions["layers.0.self_attn.k_proj.weight"] = partial(fn, is_column=True)
|
||||
base_actions["layers.0.self_attn.v_proj.weight"] = partial(fn, is_column=True)
|
||||
|
||||
base_actions["layers.0.mlp.gate_proj.weight"] = partial(
|
||||
fn, is_column=True)
|
||||
base_actions["layers.0.mlp.up_proj.weight"] = partial(
|
||||
fn, is_column=True)
|
||||
base_actions["layers.0.mlp.gate_proj.weight"] = partial(fn, is_column=True)
|
||||
base_actions["layers.0.mlp.up_proj.weight"] = partial(fn, is_column=True)
|
||||
|
||||
for key, action in base_actions.items():
|
||||
if "layers.0." in key:
|
||||
for i in range(num_layers):
|
||||
final_actions[key.replace("layers.0.",
|
||||
f"layers.{i}.")] = action
|
||||
final_actions[key.replace("layers.0.", f"layers.{i}.")] = action
|
||||
final_actions[key] = action
|
||||
|
||||
return final_actions
|
||||
|
Reference in New Issue
Block a user