polish code with new pre-commit rule (#2923)

This commit is contained in:
Zero Rains
2025-07-19 23:19:27 +08:00
committed by GitHub
parent b8676d71a8
commit 25698d56d1
424 changed files with 14307 additions and 13518 deletions

View File

@@ -13,6 +13,7 @@
# See the License for the specific language governing permissions and
# limitations under the License.
"""
import os
from abc import abstractmethod
from typing import Optional
@@ -42,8 +43,7 @@ class WeightOnlyConfig(QuantConfigBase):
self.algo = algo
# arch (int): The compute arch for target device. For example, A100 is 80, v100 is 70,
# if you do not assign arch, we will get arch from your device, default: None.
self.weight_only_linear_arch = os.getenv(
"FLAGS_weight_only_linear_arch")
self.weight_only_linear_arch = os.getenv("FLAGS_weight_only_linear_arch")
if self.weight_only_linear_arch is not None:
self.weight_only_linear_arch = int(self.weight_only_linear_arch)
self.quant_max_bound = 0
@@ -60,47 +60,62 @@ class WeightOnlyConfig(QuantConfigBase):
def get_quant_method(self, layer) -> Optional[QuantMethodBase]:
if current_platform.is_xpu():
from fastdeploy.model_executor.layers.backends import \
XPUWeightOnlyLinearMethod
from fastdeploy.model_executor.layers.moe.fused_moe_xpu_backend import \
XPUWeightOnlyMoEMethod
from fastdeploy.model_executor.layers.backends import (
XPUWeightOnlyLinearMethod,
)
from fastdeploy.model_executor.layers.moe.fused_moe_xpu_backend import (
XPUWeightOnlyMoEMethod,
)
if isinstance(layer, FusedMoE):
return XPUWeightOnlyMoEMethod(self)
else:
return XPUWeightOnlyLinearMethod(self)
elif current_platform.is_gcu():
from fastdeploy.model_executor.layers.backends import (
GCUWeightOnlyLinearMethod, GCUWeightOnlyMoEMethod)
GCUWeightOnlyLinearMethod,
GCUWeightOnlyMoEMethod,
)
if isinstance(layer, FusedMoE):
return GCUWeightOnlyMoEMethod(self)
else:
return GCUWeightOnlyLinearMethod(self)
elif current_platform.is_dcu():
if isinstance(layer, FusedMoE):
from fastdeploy.model_executor.layers.backends import \
DCUTritonWeightOnlyMoEMethod
from fastdeploy.model_executor.layers.backends import (
DCUTritonWeightOnlyMoEMethod,
)
return DCUTritonWeightOnlyMoEMethod(self)
else:
from fastdeploy.model_executor.layers.backends import \
DCUWeightOnlyLinearMethod
from fastdeploy.model_executor.layers.backends import (
DCUWeightOnlyLinearMethod,
)
return DCUWeightOnlyLinearMethod(self)
else:
if isinstance(layer, FusedMoE):
if layer.use_method == "cutlass":
from fastdeploy.model_executor.layers.moe.fused_moe_cutlass_backend import \
CutlassWeightOnlyMoEMethod
from fastdeploy.model_executor.layers.moe.fused_moe_cutlass_backend import (
CutlassWeightOnlyMoEMethod,
)
return CutlassWeightOnlyMoEMethod(self)
elif layer.use_method == "triton":
from fastdeploy.model_executor.layers.moe.fused_moe_triton_backend import \
TritonWeightOnlyMoEMethod
from fastdeploy.model_executor.layers.moe.fused_moe_triton_backend import (
TritonWeightOnlyMoEMethod,
)
return TritonWeightOnlyMoEMethod(self)
elif layer.use_method == "marlin":
from fastdeploy.model_executor.layers.moe.fused_moe_marlin_backend import \
MarlinWeightOnlyMoEMethod
from fastdeploy.model_executor.layers.moe.fused_moe_marlin_backend import (
MarlinWeightOnlyMoEMethod,
)
return MarlinWeightOnlyMoEMethod(self)
else:
raise ValueError(
f"Unsupported MOE backend {layer.use_method}")
raise ValueError(f"Unsupported MOE backend {layer.use_method}")
else:
return GPUWeightOnlyLinearMethod(self)
@@ -110,7 +125,9 @@ class WINT8Config(WeightOnlyConfig):
weight only int8 config
"""
def __init__(self, ) -> None:
def __init__(
self,
) -> None:
super().__init__("weight_only_int8")
@classmethod
@@ -126,7 +143,9 @@ class WINT4Config(WeightOnlyConfig):
weight only int4 config
"""
def __init__(self, ) -> None:
def __init__(
self,
) -> None:
super().__init__("weight_only_int4")
@classmethod
@@ -174,8 +193,7 @@ class WeightOnlyLinearMethod(QuantMethodBase):
weight=layer.weight,
bias=layer.bias if layer.add_bias else None,
weight_scale=layer.weight_scale,
weight_dtype="int8"
if self.quant_config.name() == "wint8" else "int4",
weight_dtype=("int8" if self.quant_config.name() == "wint8" else "int4"),
arch=self.quant_config.weight_only_linear_arch,
)
return linear_out
@@ -205,8 +223,7 @@ class GPUWeightOnlyLinearMethod(WeightOnlyLinearMethod):
quant_weight = get_tensor(state_dict.pop(layer.weight_key))
weight_scale = get_tensor(state_dict.pop(layer.weight_scale_key))
layer.weight.set_value(quant_weight)
layer.weight_scale.set_value(
weight_scale.astype(paddle.get_default_dtype()))
layer.weight_scale.set_value(weight_scale.astype(paddle.get_default_dtype()))
def process_loaded_weights(self, layer, weight) -> None:
@@ -217,5 +234,4 @@ class GPUWeightOnlyLinearMethod(WeightOnlyLinearMethod):
)
layer.weight.set_value(quanted_weight_tensor)
layer.weight_scale.set_value(
weight_scale_tensor.astype(paddle.get_default_dtype()))
layer.weight_scale.set_value(weight_scale_tensor.astype(paddle.get_default_dtype()))