polish code with new pre-commit rule (#2923)

This commit is contained in:
Zero Rains
2025-07-19 23:19:27 +08:00
committed by GitHub
parent b8676d71a8
commit 25698d56d1
424 changed files with 14307 additions and 13518 deletions

View File

@@ -20,6 +20,7 @@ import paddle
from paddle import nn
from paddle.base.core import Config
from paddleformers.utils.log import logger
try:
from paddle.distributed.communication import deep_ep
except:
@@ -103,10 +104,12 @@ class DeepEPEngine:
self.num_experts,
)
# Allocate a buffer if not existed or not enough buffer size
if (self.deepep_engine is None
or self.deepep_engine.group != self.group
or not self.deepep_engine.low_latency_mode
or self.deepep_engine.num_rdma_bytes < num_rdma_bytes):
if (
self.deepep_engine is None
or self.deepep_engine.group != self.group
or not self.deepep_engine.low_latency_mode
or self.deepep_engine.num_rdma_bytes < num_rdma_bytes
):
# NOTES: for best performance, the QP number **must** be equal to the number of the local experts
assert self.num_experts % self.ep_size == 0
self.deepep_engine = deep_ep.Buffer(
@@ -140,13 +143,7 @@ class DeepEPEngine:
event: the event after executing the kernel (valid only if `async_finish` is set).
hook: the receiving hook function (valid only if `return_recv_hook` is set).
"""
(
packed_recv_x,
recv_expert_count,
handle,
_,
dispatch_hook,
) = self.deepep_engine.low_latency_dispatch(
(packed_recv_x, recv_expert_count, handle, _, dispatch_hook,) = self.deepep_engine.low_latency_dispatch(
hidden_states,
topk_idx,
expertwise_scale,
@@ -172,15 +169,14 @@ class DeepEPEngine:
combined_hidden_states: [num_tokens, hidden]
"""
combined_hidden_states, _, combine_hook = (
self.deepep_engine.low_latency_combine(
hidden_states,
topk_idx,
topk_weights,
handle,
async_finish=False,
return_recv_hook=True,
))
combined_hidden_states, _, combine_hook = self.deepep_engine.low_latency_combine(
hidden_states,
topk_idx,
topk_weights,
handle,
async_finish=False,
return_recv_hook=True,
)
return combined_hidden_states, combine_hook
def clean_low_latency_buffer(self):
@@ -188,8 +184,8 @@ class DeepEPEngine:
clean_low_latency_buffer
"""
self.deepep_engine.clean_low_latency_buffer(
self.num_max_dispatch_tokens_per_rank, self.hidden,
self.num_experts)
self.num_max_dispatch_tokens_per_rank, self.hidden, self.num_experts
)
def barrier_all(self):
"""
@@ -203,14 +199,16 @@ class EPRunner:
EPRunnerBase
"""
def __init__(self,
top_k: int,
hidden: int,
num_experts: int,
moe_phase: MoEPhase,
num_max_dispatch_tokens_per_rank: int = 1,
ep_size: int = 1,
ep_rank: int = 0):
def __init__(
self,
top_k: int,
hidden: int,
num_experts: int,
moe_phase: MoEPhase,
num_max_dispatch_tokens_per_rank: int = 1,
ep_size: int = 1,
ep_rank: int = 0,
):
self.top_k = top_k
self.num_experts = num_experts
self.ep_engine = DeepEPEngine(
@@ -255,24 +253,38 @@ class EPPrefillRunner(EPRunner):
EPPrefillRunner
"""
def __init__(self,
top_k: int,
hidden: int,
num_experts: int,
ep_size: int = 1,
ep_rank: int = 0):
super().__init__(top_k,
hidden,
num_experts,
MoEPhase.PREFILL,
ep_size=ep_size,
ep_rank=ep_rank)
def __init__(
self,
top_k: int,
hidden: int,
num_experts: int,
ep_size: int = 1,
ep_rank: int = 0,
):
super().__init__(
top_k,
hidden,
num_experts,
MoEPhase.PREFILL,
ep_size=ep_size,
ep_rank=ep_rank,
)
def dispatch(self, x: paddle.Tensor, topk_idx: paddle.Tensor,
topk_weights: paddle.Tensor, *args, **kwargs):
(num_tokens_per_rank, _, num_tokens_per_expert, is_token_in_rank,
_) = self.ep_engine.deepep_engine.get_dispatch_layout(
topk_idx, self.num_experts)
def dispatch(
self,
x: paddle.Tensor,
topk_idx: paddle.Tensor,
topk_weights: paddle.Tensor,
*args,
**kwargs,
):
(
num_tokens_per_rank,
_,
num_tokens_per_expert,
is_token_in_rank,
_,
) = self.ep_engine.deepep_engine.get_dispatch_layout(topk_idx, self.num_experts)
x_scale_tensor = kwargs.get("x_scale_tensor", None)
dispatch_args = {
@@ -287,8 +299,12 @@ class EPPrefillRunner(EPRunner):
}
return self.ep_engine.deepep_engine.dispatch(**dispatch_args)
def combine(self, tmp_ffn_out: paddle.Tensor, handle: tuple,
recv_topk_weights: paddle.Tensor):
def combine(
self,
tmp_ffn_out: paddle.Tensor,
handle: tuple,
recv_topk_weights: paddle.Tensor,
):
combine_args = {
"x": tmp_ffn_out,
"handle": handle,
@@ -296,8 +312,7 @@ class EPPrefillRunner(EPRunner):
"async_finish": self.ep_engine.async_finish,
"topk_weights": recv_topk_weights,
}
fused_moe_out, _, _ = (self.ep_engine.deepep_engine.combine(
**combine_args))
fused_moe_out, _, _ = self.ep_engine.deepep_engine.combine(**combine_args)
return fused_moe_out
@@ -307,36 +322,46 @@ class EPDecoderRunner(EPRunner):
EPPrefillRunner
"""
def __init__(self,
top_k: int,
hidden: int,
num_experts: int,
num_max_dispatch_tokens_per_rank: int,
ep_size: int = 1,
ep_rank: int = 0):
super().__init__(top_k,
hidden,
num_experts,
MoEPhase.DECODER,
num_max_dispatch_tokens_per_rank,
ep_size=ep_size,
ep_rank=ep_rank)
def __init__(
self,
top_k: int,
hidden: int,
num_experts: int,
num_max_dispatch_tokens_per_rank: int,
ep_size: int = 1,
ep_rank: int = 0,
):
super().__init__(
top_k,
hidden,
num_experts,
MoEPhase.DECODER,
num_max_dispatch_tokens_per_rank,
ep_size=ep_size,
ep_rank=ep_rank,
)
def dispatch(self, x: paddle.Tensor, topk_idx: paddle.Tensor,
topk_weights: paddle.Tensor, *args, **kwargs):
def dispatch(
self,
x: paddle.Tensor,
topk_idx: paddle.Tensor,
topk_weights: paddle.Tensor,
*args,
**kwargs,
):
expertwise_scale = kwargs.get("expertwise_scale", None)
use_fp8 = kwargs.get("use_fp8", False)
recv_hidden_states, recv_expert_count, handle, dispatch_hook = (
self.ep_engine.low_latency_dispatch(x, topk_idx, expertwise_scale,
use_fp8))
recv_hidden_states, recv_expert_count, handle, dispatch_hook = self.ep_engine.low_latency_dispatch(
x, topk_idx, expertwise_scale, use_fp8
)
if dispatch_hook is not None:
dispatch_hook()
return recv_hidden_states, recv_expert_count, handle
def combine(self, ffn_out, topk_idx, topk_weights, handle):
# TODO(@wufeisheng): Delete them when deepep in PaddlePaddle is fixed
# TODO(@wufeisheng): Delete them when deepep in PaddlePaddle is fixed
(
src_info,
layout_range,
@@ -353,7 +378,8 @@ class EPDecoderRunner(EPRunner):
)
combined_hidden_states, combine_hook = self.ep_engine.low_latency_combine(
ffn_out, topk_idx, topk_weights, handle)
ffn_out, topk_idx, topk_weights, handle
)
if combine_hook is not None:
combine_hook()