polish code with new pre-commit rule (#2923)

This commit is contained in:
Zero Rains
2025-07-19 23:19:27 +08:00
committed by GitHub
parent b8676d71a8
commit 25698d56d1
424 changed files with 14307 additions and 13518 deletions

View File

@@ -17,18 +17,23 @@
import os
import numpy as np
import re
from fastdeploy.input.mm_processor import DataProcessor, IDS_TYPE_FLAG
from fastdeploy.input.ernie_processor import ErnieProcessor
from fastdeploy.engine.request import Request
from fastdeploy.entrypoints.chat_utils import parse_chat_messages
from fastdeploy.input.ernie_processor import ErnieProcessor
from fastdeploy.input.mm_processor import IDS_TYPE_FLAG, DataProcessor
from fastdeploy.utils import data_processor_logger
class ErnieMoEVLProcessor(ErnieProcessor):
"""The processor class for ERNIE MoE VL models."""
def __init__(self, model_name_or_path, limit_mm_per_prompt=None, mm_processor_kwargs=None,
reasoning_parser_obj=None):
def __init__(
self,
model_name_or_path,
limit_mm_per_prompt=None,
mm_processor_kwargs=None,
reasoning_parser_obj=None,
):
self.use_hf_tokenizer = False
if "merge_llm_model" in model_name_or_path:
@@ -37,11 +42,11 @@ class ErnieMoEVLProcessor(ErnieProcessor):
tokenizer_path = model_name_or_path
preprocessor_path = model_name_or_path
processor_kwargs = self._parse_processor_kwargs(mm_processor_kwargs)
self.ernie_processor = DataProcessor(
tokenizer_name=tokenizer_path,
image_preprocessor_name=preprocessor_path,
**processor_kwargs
**processor_kwargs,
)
self.ernie_processor.eval()
self.image_patch_id = self.ernie_processor.image_patch_id
@@ -73,12 +78,12 @@ class ErnieMoEVLProcessor(ErnieProcessor):
def process_request(self, request, max_model_len=None, **kwargs):
"""process the input data"""
task = request.to_dict()
task['enable_thinking'] = kwargs.get("enable_thinking", True)
task["enable_thinking"] = kwargs.get("enable_thinking", True)
self.process_request_dict(task, max_model_len)
request = Request.from_dict(task)
return request
def _parse_processor_kwargs(self, kwargs):
"""解析多模态处理器参数配置"""
if not kwargs:
@@ -101,13 +106,14 @@ class ErnieMoEVLProcessor(ErnieProcessor):
"video_frames_sample": str,
"video_max_frames": int,
"video_min_frames": int,
"video_fps": int
"video_fps": int,
}
for key, value in kwargs.items():
if key in expected_types and not isinstance(value, expected_types[key]):
raise ValueError(
f"Invalid type for {key}: expected {expected_types[key].__name__}, got {type(value).__name__}")
f"Invalid type for {key}: expected {expected_types[key].__name__}, got {type(value).__name__}"
)
return kwargs
@@ -117,11 +123,7 @@ class ErnieMoEVLProcessor(ErnieProcessor):
def _parse_limits(self, limits):
"""解析多模态限制配置"""
DEFAULT_LIMITS = {
"image": 1,
"video": 1,
"audio": 1
}
DEFAULT_LIMITS = {"image": 1, "video": 1, "audio": 1}
if not limits:
return DEFAULT_LIMITS
@@ -141,10 +143,7 @@ class ErnieMoEVLProcessor(ErnieProcessor):
mm_data = item
else:
# 请求包含messages
mm_data = {
"image": [],
"video": []
}
mm_data = {"image": [], "video": []}
for message in item:
if isinstance(message.get("content"), list):
@@ -153,15 +152,12 @@ class ErnieMoEVLProcessor(ErnieProcessor):
mm_data["image"].append(part)
elif part.get("type") == "video":
mm_data["video"].append(part)
for modality, data in mm_data.items():
if modality in self.limit_mm_per_prompt:
limit = self.limit_mm_per_prompt[modality]
if len(data) > limit:
raise ValueError(
f"Too many {modality} items in prompt, "
f"got {len(data)} but limit is {limit}"
)
raise ValueError(f"Too many {modality} items in prompt, " f"got {len(data)} but limit is {limit}")
def process_request_dict(self, request, max_model_len=None):
"""process the input data"""
@@ -178,7 +174,7 @@ class ErnieMoEVLProcessor(ErnieProcessor):
if request.get("prompt"):
multimodal_data = request.get("multimodal_data")
if multimodal_data is None:
multimodal_data = {}
multimodal_data = {}
self._check_mm_limits(multimodal_data)
images = multimodal_data.get("image", None)
videos = multimodal_data.get("video", None)
@@ -189,7 +185,7 @@ class ErnieMoEVLProcessor(ErnieProcessor):
outputs = self.ernie_processor.request2ids(request)
else:
raise ValueError(f"Request must contain 'prompt', or 'messages': {request}")
metadata = request.get("metadata")
# 如果metadata包含之前输出的token将这些token添加到input_ids末尾
if metadata and metadata.get("generated_token_ids"):
@@ -200,20 +196,17 @@ class ErnieMoEVLProcessor(ErnieProcessor):
request["multimodal_inputs"] = outputs
# 截断超过长度限制的prompt
if max_model_len is not None and len(
request['prompt_token_ids']) > max_model_len:
request['prompt_token_ids'] = request[
'prompt_token_ids'][:max_model_len - 1]
if max_model_len is not None and len(request["prompt_token_ids"]) > max_model_len:
request["prompt_token_ids"] = request["prompt_token_ids"][: max_model_len - 1]
if request.get("max_tokens") is None:
request["max_tokens"] = max(
1, max_model_len - len(request['prompt_token_ids']))
request["max_tokens"] = max(1, max_model_len - len(request["prompt_token_ids"]))
data_processor_logger.info(f"Processed request {request}")
return request
def append_generated_tokens(self, multimodal_inputs, generated_token_ids):
"append already generated tokens"
num_tokens = len(generated_token_ids)
multimodal_inputs["input_ids"].extend(generated_token_ids)
multimodal_inputs["token_type_ids"].extend([IDS_TYPE_FLAG["text"]] * num_tokens)
@@ -257,4 +250,4 @@ class ErnieMoEVLProcessor(ErnieProcessor):
if stream:
return self.process_response_dict_streaming(response_dict, enable_thinking=enable_thinking, **kwargs)
else:
return self.process_response_dict_normal(response_dict, enable_thinking=enable_thinking, **kwargs)
return self.process_response_dict_normal(response_dict, enable_thinking=enable_thinking, **kwargs)