mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-05 00:33:03 +08:00
polish code with new pre-commit rule (#2923)
This commit is contained in:
@@ -69,12 +69,12 @@ class ErnieProcessor(BaseDataProcessor):
|
||||
|
||||
# Generation config
|
||||
try:
|
||||
self.generation_config = GenerationConfig.from_pretrained(
|
||||
self.model_name_or_path)
|
||||
self.generation_config = GenerationConfig.from_pretrained(self.model_name_or_path)
|
||||
except Exception as e:
|
||||
data_processor_logger.warning(
|
||||
f"Can't find generation config, so it will not use "
|
||||
f"generation_config field in the model config, details={e}")
|
||||
f"generation_config field in the model config, details={e}"
|
||||
)
|
||||
self.generation_config = None
|
||||
|
||||
def process_request(self, request, max_model_len=None, **kwargs):
|
||||
@@ -89,8 +89,7 @@ class ErnieProcessor(BaseDataProcessor):
|
||||
str: error message
|
||||
"""
|
||||
request = self._apply_default_parameters(request)
|
||||
if request.get("eos_token_ids") is None or len(
|
||||
request.eos_token_ids) == 0:
|
||||
if request.get("eos_token_ids") is None or len(request.eos_token_ids) == 0:
|
||||
request.eos_token_ids = self.eos_token_ids
|
||||
stop_sequences = request.get("stop", [])
|
||||
if stop_sequences is not None and len(stop_sequences) != 0:
|
||||
@@ -98,12 +97,9 @@ class ErnieProcessor(BaseDataProcessor):
|
||||
request.set("stop_token_ids", stop_seqs)
|
||||
request.set("stop_seqs_len", stop_seqs_len)
|
||||
|
||||
if request.prompt_token_ids is None or len(
|
||||
request.prompt_token_ids) == 0:
|
||||
system = request.get("system")
|
||||
if request.prompt_token_ids is None or len(request.prompt_token_ids) == 0:
|
||||
if request.prompt is None and request.messages is None:
|
||||
raise ValueError(
|
||||
f"The request should have `input_ids`, `text` or `messages`: {request}.")
|
||||
raise ValueError(f"The request should have `input_ids`, `text` or `messages`: {request}.")
|
||||
if request.prompt is not None or not request.raw_request:
|
||||
prompt = request.prompt if request.prompt is not None else request.messages[0]
|
||||
prompt = prompt[0] if isinstance(prompt, list) else prompt
|
||||
@@ -114,14 +110,13 @@ class ErnieProcessor(BaseDataProcessor):
|
||||
else:
|
||||
request.prompt_token_ids = self.messages2ids(request.to_dict())
|
||||
|
||||
if max_model_len is not None and len(
|
||||
request.prompt_token_ids) > max_model_len:
|
||||
request.prompt_token_ids = request.prompt_token_ids[:
|
||||
max_model_len -
|
||||
1]
|
||||
if max_model_len is not None and len(request.prompt_token_ids) > max_model_len:
|
||||
request.prompt_token_ids = request.prompt_token_ids[: max_model_len - 1]
|
||||
if request.get("max_tokens") is None:
|
||||
request.set("max_tokens",
|
||||
max(1, max_model_len - len(request.prompt_token_ids)))
|
||||
request.set(
|
||||
"max_tokens",
|
||||
max(1, max_model_len - len(request.prompt_token_ids)),
|
||||
)
|
||||
if request.get("temperature") < _SAMPLING_EPS:
|
||||
# zero temperature is equivalent to greedy sampling
|
||||
request.set("temperature", 1)
|
||||
@@ -140,45 +135,36 @@ class ErnieProcessor(BaseDataProcessor):
|
||||
str: error message
|
||||
"""
|
||||
request = self._apply_default_parameters(request)
|
||||
if not request.get('eos_token_ids'):
|
||||
request['eos_token_ids'] = self.eos_token_ids
|
||||
if not request.get("eos_token_ids"):
|
||||
request["eos_token_ids"] = self.eos_token_ids
|
||||
# 处理stop_sequences
|
||||
stop_sequences = request.get('stop', [])
|
||||
stop_sequences = request.get("stop", [])
|
||||
if stop_sequences:
|
||||
stop_seqs, stop_seqs_len = self.update_stop_seq(stop_sequences)
|
||||
request['stop_token_ids'] = stop_seqs
|
||||
request['stop_seqs_len'] = stop_seqs_len
|
||||
request["stop_token_ids"] = stop_seqs
|
||||
request["stop_seqs_len"] = stop_seqs_len
|
||||
|
||||
system = request.get("system")
|
||||
# 处理prompt_token_ids
|
||||
if not request.get('prompt_token_ids'):
|
||||
if request.get('prompt') is None and request.get(
|
||||
'messages') is None:
|
||||
raise ValueError(
|
||||
f"Request must contain 'prompt_token_ids', 'prompt', or 'messages': {request}"
|
||||
)
|
||||
if request.get('prompt'):
|
||||
prompt = request.get('prompt')
|
||||
if not request.get("prompt_token_ids"):
|
||||
if request.get("prompt") is None and request.get("messages") is None:
|
||||
raise ValueError(f"Request must contain 'prompt_token_ids', 'prompt', or 'messages': {request}")
|
||||
if request.get("prompt"):
|
||||
prompt = request.get("prompt")
|
||||
prompt = prompt[0] if isinstance(prompt, list) else prompt
|
||||
|
||||
tokens = self.tokenizer.tokenize(prompt)
|
||||
token_ids = self.tokenizer.convert_tokens_to_ids(tokens)
|
||||
request['prompt_token_ids'] = token_ids
|
||||
request["prompt_token_ids"] = token_ids
|
||||
req_id = request.get("request_id", None)
|
||||
data_processor_logger.info(
|
||||
f"req_id:{req_id}, tokens:{tokens}, token_ids: {token_ids}"
|
||||
)
|
||||
data_processor_logger.info(f"req_id:{req_id}, tokens:{tokens}, token_ids: {token_ids}")
|
||||
else:
|
||||
request['prompt_token_ids'] = self.messages2ids(request)
|
||||
request["prompt_token_ids"] = self.messages2ids(request)
|
||||
|
||||
# 截断超过长度限制的prompt
|
||||
if max_model_len is not None and len(
|
||||
request['prompt_token_ids']) > max_model_len:
|
||||
request['prompt_token_ids'] = request[
|
||||
'prompt_token_ids'][:max_model_len - 1]
|
||||
if max_model_len is not None and len(request["prompt_token_ids"]) > max_model_len:
|
||||
request["prompt_token_ids"] = request["prompt_token_ids"][: max_model_len - 1]
|
||||
if request.get("max_tokens") is None:
|
||||
request["max_tokens"] = max(
|
||||
1, max_model_len - len(request['prompt_token_ids']))
|
||||
request["max_tokens"] = max(1, max_model_len - len(request["prompt_token_ids"]))
|
||||
if request.get("temperature") < _SAMPLING_EPS:
|
||||
# zero temperature is equivalent to greedy sampling
|
||||
request["temperature"] = 1
|
||||
@@ -200,22 +186,18 @@ class ErnieProcessor(BaseDataProcessor):
|
||||
req_id = response_dict.request_id
|
||||
token_ids = response_dict.outputs.token_ids
|
||||
|
||||
response_dict.usage = {
|
||||
"completion_tokens": response_dict.outputs.index + 1
|
||||
}
|
||||
response_dict.usage = {"completion_tokens": response_dict.outputs.index + 1}
|
||||
if token_ids[-1] == self.tokenizer.eos_token_id:
|
||||
token_ids = token_ids[:-1]
|
||||
full_text = self.tokenizer.decode(token_ids)
|
||||
if self.reasoning_parser:
|
||||
reasoning_content, text = self.reasoning_parser.extract_reasoning_content(
|
||||
full_text, response_dict)
|
||||
reasoning_content, text = self.reasoning_parser.extract_reasoning_content(full_text, response_dict)
|
||||
response_dict.outputs.text = text
|
||||
response_dict.outputs.reasoning_content = reasoning_content
|
||||
else:
|
||||
response_dict.outputs.text = full_text
|
||||
data_processor_logger.info(f"req_id:{req_id}, token)ids: {token_ids}")
|
||||
if response_dict.outputs.text == "" and \
|
||||
response_dict.outputs.reasoning_content == "":
|
||||
if response_dict.outputs.text == "" and response_dict.outputs.reasoning_content == "":
|
||||
return None
|
||||
return response_dict
|
||||
|
||||
@@ -230,8 +212,7 @@ class ErnieProcessor(BaseDataProcessor):
|
||||
Dict: response contain text fields
|
||||
"""
|
||||
if stream:
|
||||
return self.process_response_dict_streaming(
|
||||
response_dict, **kwargs)
|
||||
return self.process_response_dict_streaming(response_dict, **kwargs)
|
||||
else:
|
||||
return self.process_response_dict_normal(response_dict, **kwargs)
|
||||
|
||||
@@ -255,16 +236,12 @@ class ErnieProcessor(BaseDataProcessor):
|
||||
if is_end:
|
||||
full_text = previous_texts + delta_text
|
||||
if self.reasoning_parser:
|
||||
reasoning_content, text = self.reasoning_parser.extract_reasoning_content(
|
||||
full_text, response_dict)
|
||||
reasoning_content, text = self.reasoning_parser.extract_reasoning_content(full_text, response_dict)
|
||||
response_dict["outputs"]["text"] = text
|
||||
response_dict["outputs"][
|
||||
"reasoning_content"] = reasoning_content
|
||||
response_dict["outputs"]["reasoning_content"] = reasoning_content
|
||||
else:
|
||||
response_dict["outputs"]["text"] = full_text
|
||||
data_processor_logger.info(
|
||||
f"req_id:{req_id}, decode_status: {self.decode_status[req_id]}"
|
||||
)
|
||||
data_processor_logger.info(f"req_id:{req_id}, decode_status: {self.decode_status[req_id]}")
|
||||
del self.decode_status[req_id]
|
||||
return response_dict
|
||||
|
||||
@@ -286,20 +263,22 @@ class ErnieProcessor(BaseDataProcessor):
|
||||
if is_end and len(token_ids) > 0 and not kwargs.get("include_stop_str_in_output"):
|
||||
if token_ids[-1] == self.tokenizer.eos_token_id:
|
||||
token_ids = token_ids[:-1]
|
||||
delta_text, previous_token_ids, previous_texts = self.ids2tokens(
|
||||
token_ids, req_id)
|
||||
delta_text, previous_token_ids, previous_texts = self.ids2tokens(token_ids, req_id)
|
||||
if enable_thinking and self.reasoning_parser:
|
||||
reasoning_content, text = self.reasoning_parser.extract_reasoning_content_streaming(
|
||||
previous_texts, previous_texts + delta_text, delta_text,
|
||||
previous_token_ids, previous_token_ids + token_ids, token_ids)
|
||||
previous_texts,
|
||||
previous_texts + delta_text,
|
||||
delta_text,
|
||||
previous_token_ids,
|
||||
previous_token_ids + token_ids,
|
||||
token_ids,
|
||||
)
|
||||
response_dict["outputs"]["text"] = text
|
||||
response_dict["outputs"]["reasoning_content"] = reasoning_content
|
||||
else:
|
||||
response_dict["outputs"]["text"] = delta_text
|
||||
if is_end:
|
||||
data_processor_logger.info(
|
||||
f"req_id:{req_id}, decode_status: {self.decode_status[req_id]}"
|
||||
)
|
||||
data_processor_logger.info(f"req_id:{req_id}, decode_status: {self.decode_status[req_id]}")
|
||||
del self.decode_status[req_id]
|
||||
return response_dict
|
||||
|
||||
@@ -320,15 +299,15 @@ class ErnieProcessor(BaseDataProcessor):
|
||||
request_or_messages,
|
||||
tokenize=False,
|
||||
split_special_tokens=False,
|
||||
add_special_tokens=False)
|
||||
add_special_tokens=False,
|
||||
)
|
||||
|
||||
req_id = None
|
||||
if isinstance(request_or_messages, dict):
|
||||
req_id = request_or_messages.get("request_id", None)
|
||||
tokens = self.tokenizer.tokenize(spliced_message)
|
||||
token_ids = self.tokenizer.convert_tokens_to_ids(tokens)
|
||||
data_processor_logger.info(
|
||||
f"req_id:{req_id}, tokens:{tokens}, token_ids: {token_ids}")
|
||||
data_processor_logger.info(f"req_id:{req_id}, tokens:{tokens}, token_ids: {token_ids}")
|
||||
return token_ids
|
||||
|
||||
def ids2tokens(self, token_id, task_id):
|
||||
@@ -352,7 +331,8 @@ class ErnieProcessor(BaseDataProcessor):
|
||||
previous_token_ids = self.decode_status[task_id][2]
|
||||
previous_texts = self.decode_status[task_id][3]
|
||||
decode_str, prefix_offset, read_offset = self.tokenizer.decode_token(
|
||||
previous_token_ids + token_id, prefix_offset, read_offset)
|
||||
previous_token_ids + token_id, prefix_offset, read_offset
|
||||
)
|
||||
self.decode_status[task_id][0] = prefix_offset
|
||||
self.decode_status[task_id][1] = read_offset
|
||||
self.decode_status[task_id][2] += token_id
|
||||
@@ -368,17 +348,15 @@ class ErnieProcessor(BaseDataProcessor):
|
||||
tokenizer (AutoTokenizer)
|
||||
"""
|
||||
vocab_file_names = [
|
||||
"tokenizer.model", "spm.model", "ernie_token_100k.model"
|
||||
"tokenizer.model",
|
||||
"spm.model",
|
||||
"ernie_token_100k.model",
|
||||
]
|
||||
for i in range(len(vocab_file_names)):
|
||||
if os.path.exists(
|
||||
os.path.join(self.model_name_or_path,
|
||||
vocab_file_names[i])):
|
||||
ErnieBotTokenizer.resource_files_names[
|
||||
"vocab_file"] = vocab_file_names[i]
|
||||
if os.path.exists(os.path.join(self.model_name_or_path, vocab_file_names[i])):
|
||||
ErnieBotTokenizer.resource_files_names["vocab_file"] = vocab_file_names[i]
|
||||
break
|
||||
self.tokenizer = ErnieBotTokenizer.from_pretrained(
|
||||
self.model_name_or_path)
|
||||
self.tokenizer = ErnieBotTokenizer.from_pretrained(self.model_name_or_path)
|
||||
|
||||
def get_pad_id(self):
|
||||
"""
|
||||
@@ -391,16 +369,17 @@ class ErnieProcessor(BaseDataProcessor):
|
||||
# return self.tokenizer.eos_token
|
||||
return self.tokenizer.pad_token_id
|
||||
|
||||
def pad_batch_data(self,
|
||||
insts,
|
||||
pad_id=0,
|
||||
return_seq_len=False,
|
||||
return_array=True,
|
||||
pad_style="right"):
|
||||
def pad_batch_data(
|
||||
self,
|
||||
insts,
|
||||
pad_id=0,
|
||||
return_seq_len=False,
|
||||
return_array=True,
|
||||
pad_style="right",
|
||||
):
|
||||
"""Pad the instances to the max sequence length in batch."""
|
||||
if len(insts) == 0:
|
||||
padded_insts = np.array([[]],
|
||||
dtype=np.int64) if return_array else [[]]
|
||||
padded_insts = np.array([[]], dtype=np.int64) if return_array else [[]]
|
||||
if return_seq_len:
|
||||
seq_len = np.array([], dtype=np.int64) if return_array else []
|
||||
return padded_insts, seq_len
|
||||
@@ -408,15 +387,11 @@ class ErnieProcessor(BaseDataProcessor):
|
||||
|
||||
max_len = max(map(len, insts))
|
||||
if pad_style == "left":
|
||||
padded_insts = [[pad_id] * (max_len - len(inst)) + list(inst)
|
||||
for inst in insts]
|
||||
padded_insts = [[pad_id] * (max_len - len(inst)) + list(inst) for inst in insts]
|
||||
else:
|
||||
padded_insts = [
|
||||
list(inst) + [pad_id] * (max_len - len(inst)) for inst in insts
|
||||
]
|
||||
padded_insts = [list(inst) + [pad_id] * (max_len - len(inst)) for inst in insts]
|
||||
if return_array:
|
||||
padded_insts = np.array(padded_insts,
|
||||
dtype=np.int64).reshape([-1, max_len])
|
||||
padded_insts = np.array(padded_insts, dtype=np.int64).reshape([-1, max_len])
|
||||
|
||||
if return_seq_len:
|
||||
seq_len = [len(inst) for inst in insts]
|
||||
@@ -432,15 +407,9 @@ class ErnieProcessor(BaseDataProcessor):
|
||||
stop_seqs = []
|
||||
for seq in stop_sequences:
|
||||
if seq != self.tokenizer.eos_token_id:
|
||||
stop_seqs.append(
|
||||
self.tokenizer.convert_tokens_to_ids(
|
||||
self.tokenizer.tokenize(seq)))
|
||||
stop_seqs, stop_seqs_len = self.pad_batch_data(stop_seqs,
|
||||
pad_id=-1,
|
||||
return_seq_len=True,
|
||||
return_array=False)
|
||||
data_processor_logger.debug(
|
||||
f"processed stop_seqs: {stop_seqs}, {stop_seqs_len}")
|
||||
stop_seqs.append(self.tokenizer.convert_tokens_to_ids(self.tokenizer.tokenize(seq)))
|
||||
stop_seqs, stop_seqs_len = self.pad_batch_data(stop_seqs, pad_id=-1, return_seq_len=True, return_array=False)
|
||||
data_processor_logger.debug(f"processed stop_seqs: {stop_seqs}, {stop_seqs_len}")
|
||||
return stop_seqs, stop_seqs_len
|
||||
|
||||
def process_logprob_response(self, token_ids, **kwargs):
|
||||
|
Reference in New Issue
Block a user