polish code with new pre-commit rule (#2923)

This commit is contained in:
Zero Rains
2025-07-19 23:19:27 +08:00
committed by GitHub
parent b8676d71a8
commit 25698d56d1
424 changed files with 14307 additions and 13518 deletions

View File

@@ -29,34 +29,35 @@ from fastdeploy.worker.output import LogprobsLists
@dataclass
class Request:
def __init__(self,
request_id: str,
prompt: Optional[Union[str, list[str]]],
prompt_token_ids: Optional[list[int]],
prompt_token_ids_len: Optional[int],
messages: Optional[list[list[dict[str, Any]]]],
history: Optional[list[list[str]]],
tools: Optional[list[Dict]],
system: Optional[Union[str, list[str]]],
sampling_params: SamplingParams,
eos_token_ids: Optional[list[int]],
arrival_time: float,
preprocess_start_time: Optional[float] = None,
preprocess_end_time: Optional[float] = None,
multimodal_inputs: Optional[dict] = None,
multimodal_data: Optional[dict] = None,
raw_request: bool = True,
disaggregate_info: Optional[dict] = None,
draft_token_ids: Optional[list[int]] = None,
guided_json: Optional[Any] = None,
guided_regex: Optional[Any] = None,
guided_choice: Optional[Any] = None,
guided_grammar: Optional[Any] = None,
structural_tag: Optional[Any] = None,
guided_json_object: Optional[bool] = None,
enable_thinking: Optional[bool] = True,
trace_carrier: dict = dict()) -> None:
def __init__(
self,
request_id: str,
prompt: Optional[Union[str, list[str]]],
prompt_token_ids: Optional[list[int]],
prompt_token_ids_len: Optional[int],
messages: Optional[list[list[dict[str, Any]]]],
history: Optional[list[list[str]]],
tools: Optional[list[Dict]],
system: Optional[Union[str, list[str]]],
sampling_params: SamplingParams,
eos_token_ids: Optional[list[int]],
arrival_time: float,
preprocess_start_time: Optional[float] = None,
preprocess_end_time: Optional[float] = None,
multimodal_inputs: Optional[dict] = None,
multimodal_data: Optional[dict] = None,
raw_request: bool = True,
disaggregate_info: Optional[dict] = None,
draft_token_ids: Optional[list[int]] = None,
guided_json: Optional[Any] = None,
guided_regex: Optional[Any] = None,
guided_choice: Optional[Any] = None,
guided_grammar: Optional[Any] = None,
structural_tag: Optional[Any] = None,
guided_json_object: Optional[bool] = None,
enable_thinking: Optional[bool] = True,
trace_carrier: dict = dict(),
) -> None:
self.request_id = request_id
self.prompt = prompt
self.prompt_token_ids = prompt_token_ids
@@ -98,35 +99,37 @@ class Request:
def from_dict(cls, d: dict):
data_processor_logger.debug(f"{d}")
sampling_params = SamplingParams.from_dict(d)
return cls(request_id=d["request_id"],
prompt=d.get("prompt"),
prompt_token_ids=d.get("prompt_token_ids"),
prompt_token_ids_len=d.get("prompt_token_ids_len"),
messages=d.get("messages"),
system=d.get("system"),
history=d.get("history"),
tools=d.get("tools"),
sampling_params=sampling_params,
eos_token_ids=d.get("eos_token_ids"),
arrival_time=d.get("arrival_time", time.time()),
preprocess_start_time=d.get("preprocess_start_time"),
preprocess_end_time=d.get("preprocess_end_time"),
multimodal_inputs=d.get("multimodal_inputs"),
multimodal_data=d.get("multimodal_data"),
disaggregate_info=d.get("disaggregate_info"),
draft_token_ids=d.get("draft_token_ids"),
raw_request=d.get("raw_request", True),
guided_json=d.get("guided_json", None),
guided_regex=d.get("guided_regex", None),
guided_choice=d.get("guided_choice", None),
guided_grammar=d.get("guided_grammar", None),
structural_tag=d.get("structural_tag", None),
guided_json_object=d.get("guided_json_object", None),
enable_thinking=d.get("enable_thinking", True),
trace_carrier=d.get("trace_carrier", {}))
return cls(
request_id=d["request_id"],
prompt=d.get("prompt"),
prompt_token_ids=d.get("prompt_token_ids"),
prompt_token_ids_len=d.get("prompt_token_ids_len"),
messages=d.get("messages"),
system=d.get("system"),
history=d.get("history"),
tools=d.get("tools"),
sampling_params=sampling_params,
eos_token_ids=d.get("eos_token_ids"),
arrival_time=d.get("arrival_time", time.time()),
preprocess_start_time=d.get("preprocess_start_time"),
preprocess_end_time=d.get("preprocess_end_time"),
multimodal_inputs=d.get("multimodal_inputs"),
multimodal_data=d.get("multimodal_data"),
disaggregate_info=d.get("disaggregate_info"),
draft_token_ids=d.get("draft_token_ids"),
raw_request=d.get("raw_request", True),
guided_json=d.get("guided_json", None),
guided_regex=d.get("guided_regex", None),
guided_choice=d.get("guided_choice", None),
guided_grammar=d.get("guided_grammar", None),
structural_tag=d.get("structural_tag", None),
guided_json_object=d.get("guided_json_object", None),
enable_thinking=d.get("enable_thinking", True),
trace_carrier=d.get("trace_carrier", {}),
)
def to_dict(self) -> dict:
"""convert Request into a serializable dict """
"""convert Request into a serializable dict"""
data = {
"request_id": self.request_id,
"prompt": self.prompt,
@@ -146,11 +149,15 @@ class Request:
"disaggregate_info": self.disaggregate_info,
"draft_token_ids": self.draft_token_ids,
"enable_thinking": self.enable_thinking,
"trace_carrier": self.trace_carrier
"trace_carrier": self.trace_carrier,
}
add_params = [
"guided_json", "guided_regex", "guided_choice", "guided_grammar",
"structural_tag", "guided_json_object"
"guided_json",
"guided_regex",
"guided_choice",
"guided_grammar",
"structural_tag",
"guided_json_object",
]
for param in add_params:
if getattr(self, param, None) is not None:
@@ -174,11 +181,13 @@ class Request:
setattr(self, key, value)
def __repr__(self) -> str:
return (f"Request(request_id={self.request_id}, "
f"prompt={self.prompt!r}, "
f"prompt_token_ids={self.prompt_token_ids}, "
f"draft_token_ids={self.draft_token_ids}, "
f"sampling_params={self.sampling_params})")
return (
f"Request(request_id={self.request_id}, "
f"prompt={self.prompt!r}, "
f"prompt_token_ids={self.prompt_token_ids}, "
f"draft_token_ids={self.draft_token_ids}, "
f"sampling_params={self.sampling_params})"
)
@dataclass(slots=True)
@@ -202,7 +211,7 @@ class CompletionOutput:
def to_dict(self):
"""
convert CompletionOutput to a serialized dict
convert CompletionOutput to a serialized dict
"""
return {
"index": self.index,
@@ -212,27 +221,28 @@ class CompletionOutput:
"top_logprobs": self.top_logprobs,
"draft_token_ids": self.draft_token_ids,
"text": self.text,
"reasoning_content": self.reasoning_content
"reasoning_content": self.reasoning_content,
}
@classmethod
def from_dict(cls, req_dict: dict[str, Any]) -> 'CompletionOutput':
def from_dict(cls, req_dict: dict[str, Any]) -> CompletionOutput:
"""Create instance from dict arguments"""
return cls(
**{
field.name:
req_dict[field.name] if field.name in
req_dict else field.default
field.name: (req_dict[field.name] if field.name in req_dict else field.default)
for field in fields(cls)
})
}
)
def __repr__(self) -> str:
return (f"CompletionOutput(index={self.index}, "
f"send_idx={self.send_idx}, "
f"text={self.text!r}, "
f"token_ids={self.token_ids}, "
f"draft_token_ids={self.draft_token_ids}, "
f"reasoning_content={self.reasoning_content!r}")
return (
f"CompletionOutput(index={self.index}, "
f"send_idx={self.send_idx}, "
f"text={self.text!r}, "
f"token_ids={self.token_ids}, "
f"draft_token_ids={self.draft_token_ids}, "
f"reasoning_content={self.reasoning_content!r}"
)
@dataclass(slots=True)
@@ -252,6 +262,7 @@ class RequestMetrics:
request_start_time: Time to accept the request
"""
arrival_time: float
inference_start_time: Optional[float] = None
first_token_time: Optional[float] = None
@@ -273,19 +284,18 @@ class RequestMetrics:
"preprocess_cost_time": self.preprocess_cost_time,
"model_forward_time": self.model_forward_time,
"model_execute_time": self.model_execute_time,
"request_start_time": self.request_start_time
"request_start_time": self.request_start_time,
}
@classmethod
def from_dict(cls, req_dict: dict[str, Any]) -> 'RequestMetrics':
def from_dict(cls, req_dict: dict[str, Any]) -> RequestMetrics:
"""Create instance from dict arguments"""
return cls(
**{
field.name:
req_dict[field.name] if field.name in
req_dict else field.default
field.name: (req_dict[field.name] if field.name in req_dict else field.default)
for field in fields(cls)
})
}
)
class RequestOutput:
@@ -333,13 +343,12 @@ class RequestOutput:
self.error_code = error_code
self.error_msg = error_msg
if prompt_token_ids is None:
self.prompt_token_ids = []
elif isinstance(self.prompt_token_ids, np.ndarray):
self.prompt_token_ids = self.prompt_token_ids.tolist()
def add(self, next_output: "RequestOutput") -> None:
def add(self, next_output: RequestOutput) -> None:
"""Merge RequestOutput into this one"""
self.prompt = next_output.prompt
@@ -348,19 +357,19 @@ class RequestOutput:
self.outputs.index = next_output.outputs.index
self.outputs.token_ids.extend(next_output.outputs.token_ids)
if next_output.metrics.arrival_time is not None and self.metrics.inference_start_time is not None:
self.metrics.model_forward_time = next_output.metrics.arrival_time - \
self.metrics.inference_start_time
self.metrics.model_forward_time = next_output.metrics.arrival_time - self.metrics.inference_start_time
if next_output.metrics.arrival_time is not None and self.metrics.arrival_time is not None:
self.metrics.model_execute_time = next_output.metrics.arrival_time - \
self.metrics.arrival_time
self.metrics.model_execute_time = next_output.metrics.arrival_time - self.metrics.arrival_time
def __repr__(self) -> str:
return (f"RequestOutput(request_id={self.request_id}, "
f"prompt={self.prompt!r}, "
f"prompt_token_ids={self.prompt_token_ids}, "
f"outputs={self.outputs}, "
f"metrics={self.metrics}, "
f"num_cached_tokens={self.num_cached_tokens})")
return (
f"RequestOutput(request_id={self.request_id}, "
f"prompt={self.prompt!r}, "
f"prompt_token_ids={self.prompt_token_ids}, "
f"outputs={self.outputs}, "
f"metrics={self.metrics}, "
f"num_cached_tokens={self.num_cached_tokens})"
)
@classmethod
def from_dict(cls, d: dict):
@@ -370,16 +379,14 @@ class RequestOutput:
return RequestOutput(**d, outputs=completion_output, metrics=metrics)
def to_dict(self):
"""convert RequestOutput into a serializable dict """
"""convert RequestOutput into a serializable dict"""
return {
"request_id": self.request_id,
"prompt": self.prompt,
"prompt_token_ids": self.prompt_token_ids,
"outputs":
None if self.outputs is None else self.outputs.to_dict(),
"metrics":
None if self.metrics is None else self.metrics.to_dict(),
"outputs": None if self.outputs is None else self.outputs.to_dict(),
"metrics": None if self.metrics is None else self.metrics.to_dict(),
"finished": self.finished,
"num_cached_tokens": self.num_cached_tokens,
"error_code": self.error_code,