mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-05 08:37:06 +08:00
polish code with new pre-commit rule (#2923)
This commit is contained in:
@@ -24,12 +24,12 @@ from typing import Literal, Optional
|
||||
from paddleformers.transformers.configuration_utils import PretrainedConfig
|
||||
|
||||
from fastdeploy import envs
|
||||
from fastdeploy.model_executor.layers.quantization.quant_base import \
|
||||
QuantConfigBase
|
||||
from fastdeploy.model_executor.layers.quantization.quant_base import QuantConfigBase
|
||||
from fastdeploy.utils import get_logger
|
||||
|
||||
logger = get_logger("config", "config.log")
|
||||
|
||||
|
||||
class MoEPhase(Enum):
|
||||
"""
|
||||
The generation phase of the moe.
|
||||
@@ -38,13 +38,14 @@ class MoEPhase(Enum):
|
||||
PREFILL = 1
|
||||
DECODER = 2
|
||||
|
||||
|
||||
class ErnieArchitectures:
|
||||
"""Helper class for ERNIE architecture check."""
|
||||
|
||||
|
||||
ARCHITECTURES = {
|
||||
"Ernie4_5_ForCausalLM",
|
||||
"Ernie4_5_MoeForCausalLM",
|
||||
"Ernie4_5_VLMoeForConditionalGeneration"
|
||||
"Ernie4_5_MoeForCausalLM",
|
||||
"Ernie4_5_VLMoeForConditionalGeneration",
|
||||
}
|
||||
|
||||
@classmethod
|
||||
@@ -57,23 +58,24 @@ class ErnieArchitectures:
|
||||
"""Check if the given architecture is an ERNIE architecture."""
|
||||
return architecture in cls.ARCHITECTURES
|
||||
|
||||
|
||||
PRETRAINED_INIT_CONFIGURATION = {
|
||||
"rope_theta" : 10000.0,
|
||||
"num_key_value_heads" : -1,
|
||||
"start_layer_index" : 0,
|
||||
"moe_num_shared_experts" : 0,
|
||||
"moe_layer_start_index" : 0,
|
||||
"num_max_dispatch_tokens_per_rank" : 256,
|
||||
"moe_use_aux_free" : False,
|
||||
"vocab_size" : -1,
|
||||
"hidden_dropout_prob" : 0.0,
|
||||
"initializer_range" : 0.02,
|
||||
"max_position_embeddings" : 512,
|
||||
"quantization_config" : None,
|
||||
"tie_word_embeddings" : False,
|
||||
"rms_norm_eps" : 1e-5,
|
||||
"moe_num_experts" : None,
|
||||
"moe_layer_end_index" : None,
|
||||
"rope_theta": 10000.0,
|
||||
"num_key_value_heads": -1,
|
||||
"start_layer_index": 0,
|
||||
"moe_num_shared_experts": 0,
|
||||
"moe_layer_start_index": 0,
|
||||
"num_max_dispatch_tokens_per_rank": 256,
|
||||
"moe_use_aux_free": False,
|
||||
"vocab_size": -1,
|
||||
"hidden_dropout_prob": 0.0,
|
||||
"initializer_range": 0.02,
|
||||
"max_position_embeddings": 512,
|
||||
"quantization_config": None,
|
||||
"tie_word_embeddings": False,
|
||||
"rms_norm_eps": 1e-5,
|
||||
"moe_num_experts": None,
|
||||
"moe_layer_end_index": None,
|
||||
}
|
||||
|
||||
|
||||
@@ -81,6 +83,7 @@ class ModelConfig:
|
||||
"""
|
||||
The configuration class to store the configuration of a `LLM`.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
args,
|
||||
@@ -134,6 +137,7 @@ class ModelConfig:
|
||||
|
||||
class ParallelConfig:
|
||||
"""Configuration for the distributed execution."""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
args,
|
||||
@@ -213,10 +217,8 @@ class ParallelConfig:
|
||||
self.enable_custom_all_reduce: bool = False
|
||||
|
||||
# pd_disaggregation
|
||||
use_pd_disaggregation: int = int(
|
||||
os.getenv("FLAGS_use_pd_disaggregation", 0))
|
||||
use_pd_disaggregation_per_chunk: int = int(
|
||||
os.getenv("FLAGS_use_pd_disaggregation_per_chunk", 0))
|
||||
use_pd_disaggregation: int = int(os.getenv("FLAGS_use_pd_disaggregation", 0))
|
||||
use_pd_disaggregation_per_chunk: int = int(os.getenv("FLAGS_use_pd_disaggregation_per_chunk", 0))
|
||||
if use_pd_disaggregation_per_chunk:
|
||||
self.pd_disaggregation_mode = "per_chunk"
|
||||
elif use_pd_disaggregation:
|
||||
@@ -224,10 +226,12 @@ class ParallelConfig:
|
||||
else:
|
||||
self.pd_disaggregation_mode = "None"
|
||||
|
||||
|
||||
class SpeculativeConfig:
|
||||
"""
|
||||
Configuration for speculative decoding.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
args,
|
||||
@@ -261,22 +265,26 @@ class SpeculativeConfig:
|
||||
# This ensures that the specified simulation acceptance rate is not affected.
|
||||
self.benchmark_mode: bool = False
|
||||
|
||||
#TODO(YuanRisheng): The name of the server args is different from the name of the SpeculativeConfig.
|
||||
#We temperately add the name map here and will delete it in future.
|
||||
name_map = {"speculative_method": "method",
|
||||
"speculative_max_draft_token_num": "num_speculative_tokens",
|
||||
"speculative_model_name_or_path": "model_name_or_path",
|
||||
"speculative_model_quantization": "quantization",
|
||||
"speculative_benchmark_mode": "benchmark_mode"}
|
||||
# TODO(YuanRisheng): The name of the server args is different from the name of the SpeculativeConfig.
|
||||
# We temperately add the name map here and will delete it in future.
|
||||
name_map = {
|
||||
"speculative_method": "method",
|
||||
"speculative_max_draft_token_num": "num_speculative_tokens",
|
||||
"speculative_model_name_or_path": "model_name_or_path",
|
||||
"speculative_model_quantization": "quantization",
|
||||
"speculative_benchmark_mode": "benchmark_mode",
|
||||
}
|
||||
|
||||
for key, value in args.items():
|
||||
if key in name_map.keys() and hasattr(self, name_map[key]):
|
||||
setattr(self, name_map[key], value)
|
||||
|
||||
|
||||
class DeviceConfig:
|
||||
"""
|
||||
Configuration for device settings.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
args,
|
||||
@@ -286,6 +294,7 @@ class DeviceConfig:
|
||||
if hasattr(self, key):
|
||||
setattr(self, key, value)
|
||||
|
||||
|
||||
@dataclass
|
||||
class GraphOptimizationConfig:
|
||||
"""
|
||||
@@ -336,15 +345,10 @@ class GraphOptimizationConfig:
|
||||
full_cuda_graph: bool = True
|
||||
|
||||
max_capture_size: int = field(default=None, init=False) # type: ignore
|
||||
batch_size_to_captured_size: dict[int,
|
||||
int] = field(default=None,
|
||||
init=False) # type: ignore
|
||||
batch_size_to_captured_size: dict[int, int] = field(default=None, init=False) # type: ignore
|
||||
# CINN Config ...
|
||||
|
||||
def init_with_cudagrpah_size(
|
||||
self,
|
||||
max_num_seqs:int = 0
|
||||
) -> None:
|
||||
def init_with_cudagrpah_size(self, max_num_seqs: int = 0) -> None:
|
||||
"""
|
||||
Initialize cuda graph capture sizes and
|
||||
pre-compute the mapping from batch size to padded graph size
|
||||
@@ -353,32 +357,28 @@ class GraphOptimizationConfig:
|
||||
self.cudagraph_capture_sizes = [size for size in self.cudagraph_capture_sizes if size <= max_num_seqs]
|
||||
dedup_sizes = list(set(self.cudagraph_capture_sizes))
|
||||
if len(dedup_sizes) < len(self.cudagraph_capture_sizes):
|
||||
logger.info(("cudagraph sizes specified by model runner"
|
||||
" %s is overridden by config %s"),
|
||||
self.cudagraph_capture_sizes, dedup_sizes)
|
||||
logger.info(
|
||||
("cudagraph sizes specified by model runner" " %s is overridden by config %s"),
|
||||
self.cudagraph_capture_sizes,
|
||||
dedup_sizes,
|
||||
)
|
||||
self.cudagraph_capture_sizes = dedup_sizes
|
||||
|
||||
# Sort to make sure cudagraph capture sizes are in descending order
|
||||
self.cudagraph_capture_sizes.sort(reverse=True)
|
||||
self.max_capture_size = self.cudagraph_capture_sizes[
|
||||
0] if self.cudagraph_capture_sizes else 0
|
||||
self.max_capture_size = self.cudagraph_capture_sizes[0] if self.cudagraph_capture_sizes else 0
|
||||
|
||||
# Pre-compute the mapping from batch size to padded graph size
|
||||
self.batch_size_to_captured_size = {}
|
||||
for end, start in zip(self.cudagraph_capture_sizes,
|
||||
self.cudagraph_capture_sizes[1:] + [0]):
|
||||
for end, start in zip(self.cudagraph_capture_sizes, self.cudagraph_capture_sizes[1:] + [0]):
|
||||
for bs in range(start, end):
|
||||
if bs == start:
|
||||
self.batch_size_to_captured_size[bs] = start
|
||||
else:
|
||||
self.batch_size_to_captured_size[bs] = end
|
||||
self.batch_size_to_captured_size[
|
||||
self.max_capture_size] = self.max_capture_size
|
||||
self.batch_size_to_captured_size[self.max_capture_size] = self.max_capture_size
|
||||
|
||||
def _set_cudagraph_sizes(
|
||||
self,
|
||||
max_num_seqs:int = 0
|
||||
):
|
||||
def _set_cudagraph_sizes(self, max_num_seqs: int = 0):
|
||||
"""
|
||||
Calculate a series of candidate capture batch sizes,
|
||||
and then extract a portion of them as the capture list for the CUDA graph based on user input.
|
||||
@@ -405,24 +405,28 @@ class LoadConfig:
|
||||
- 'ipc_snapshot': Load from disk snapshot of IPC weights
|
||||
- None: No dynamic loading
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
args,
|
||||
):
|
||||
self.use_fastsafetensor = int(envs.FD_USE_FASTSAFETENSOR) == 1
|
||||
self.dynamic_load_weight: bool = False
|
||||
self.load_strategy: Optional[Literal['ipc', 'ipc_snapshot']] = None
|
||||
self.load_strategy: Optional[Literal["ipc", "ipc_snapshot"]] = None
|
||||
for key, value in args.items():
|
||||
if hasattr(self, key):
|
||||
setattr(self, key, value)
|
||||
|
||||
|
||||
class LoRAConfig:
|
||||
""" LoRA Config """
|
||||
"""LoRA Config"""
|
||||
|
||||
pass
|
||||
|
||||
|
||||
class KVCacheConfig:
|
||||
""" KV Cache Config """
|
||||
"""KV Cache Config"""
|
||||
|
||||
cache_quant_dtype: str = "none"
|
||||
|
||||
|
||||
@@ -430,6 +434,7 @@ class DecodingConfig:
|
||||
"""
|
||||
Configuration for decoding
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
args,
|
||||
@@ -439,26 +444,24 @@ class DecodingConfig:
|
||||
if hasattr(self, key):
|
||||
setattr(self, key, value)
|
||||
|
||||
|
||||
@dataclass
|
||||
class FDConfig:
|
||||
"""
|
||||
The configuration class which contains all fastdeploy-related configuration. This
|
||||
simplifies passing around the distinct configurations in the codebase.
|
||||
"""
|
||||
|
||||
model_config: ModelConfig = field(default=None, init=True) # type: ignore
|
||||
|
||||
parallel_config: ParallelConfig = field(default=None, init=True)
|
||||
speculative_config: SpeculativeConfig = field(default=None,
|
||||
init=True) # type: ignore
|
||||
device_config: DeviceConfig = field(default=None,
|
||||
init=True) # type: ignore
|
||||
speculative_config: SpeculativeConfig = field(default=None, init=True) # type: ignore
|
||||
device_config: DeviceConfig = field(default=None, init=True) # type: ignore
|
||||
load_config: LoadConfig = field(default=None, init=True)
|
||||
quant_config: Optional[QuantConfigBase] = None
|
||||
graph_opt_config: Optional[GraphOptimizationConfig] = None
|
||||
decoding_config: DecodingConfig = field(default=None,
|
||||
init=True) # type: ignore
|
||||
kv_cache_config: KVCacheConfig = field(default=None,
|
||||
init=True) # type: ignore
|
||||
decoding_config: DecodingConfig = field(default=None, init=True) # type: ignore
|
||||
kv_cache_config: KVCacheConfig = field(default=None, init=True) # type: ignore
|
||||
|
||||
def __post_init__(self):
|
||||
# Initialize cuda graph capture list
|
||||
@@ -466,6 +469,6 @@ class FDConfig:
|
||||
self.graph_opt_config._set_cudagraph_sizes(max_num_seqs=self.parallel_config.max_num_seqs)
|
||||
self.graph_opt_config.init_with_cudagrpah_size(max_num_seqs=self.parallel_config.max_num_seqs)
|
||||
|
||||
#TODO(wangmingkai02): change graph_opt_level=2 when using static mode with cinn
|
||||
# TODO(wangmingkai02): change graph_opt_level=2 when using static mode with cinn
|
||||
if self.graph_opt_config.graph_opt_level == 2:
|
||||
self.graph_opt_config.graph_opt_level = 1
|
||||
|
Reference in New Issue
Block a user