mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-06 17:17:14 +08:00
[Model] add tracking trail on vis_mot (#461)
* add override mark * delete some * recovery * recovery * add tracking * add tracking py_bind and example * add pptracking * add pptracking * iomanip head file * add opencv_video lib * add python libs package Signed-off-by: ChaoII <849453582@qq.com> * complete comments Signed-off-by: ChaoII <849453582@qq.com> * add jdeTracker_ member variable Signed-off-by: ChaoII <849453582@qq.com> * add 'FASTDEPLOY_DECL' macro Signed-off-by: ChaoII <849453582@qq.com> * remove kwargs params Signed-off-by: ChaoII <849453582@qq.com> * [Doc]update pptracking docs * delete 'ENABLE_PADDLE_FRONTEND' switch * add pptracking unit test * update pptracking unit test Signed-off-by: ChaoII <849453582@qq.com> * modify test video file path and remove trt test * update unit test model url * remove 'FASTDEPLOY_DECL' macro Signed-off-by: ChaoII <849453582@qq.com> * fix build python packages about pptracking on win32 Signed-off-by: ChaoII <849453582@qq.com> * update comment Signed-off-by: ChaoII <849453582@qq.com> * add pptracking model explain Signed-off-by: ChaoII <849453582@qq.com> * add tracking trail on vis_mot * add tracking trail * modify code for some suggestion * remove unused import * fix import bug Signed-off-by: ChaoII <849453582@qq.com> Co-authored-by: Jason <jiangjiajun@baidu.com>
This commit is contained in:
@@ -2,16 +2,18 @@
|
||||
|
||||
本目录下提供了各类视觉模型的部署,主要涵盖以下任务类型
|
||||
|
||||
| 任务类型 | 说明 | 预测结果结构体 |
|
||||
|:-------------- |:----------------------------------- |:-------------------------------------------------------------------------------- |
|
||||
| Detection | 目标检测,输入图像,检测图像中物体位置,并返回检测框坐标及类别和置信度 | [DetectionResult](../../docs/api/vision_results/detection_result.md) |
|
||||
| Segmentation | 语义分割,输入图像,给出图像中每个像素的分类及置信度 | [SegmentationResult](../../docs/api/vision_results/segmentation_result.md) |
|
||||
| Classification | 图像分类,输入图像,给出图像的分类结果和置信度 | [ClassifyResult](../../docs/api/vision_results/classification_result.md) |
|
||||
| FaceDetection | 人脸检测,输入图像,检测图像中人脸位置,并返回检测框坐标及人脸关键点 | [FaceDetectionResult](../../docs/api/vision_results/face_detection_result.md) |
|
||||
| KeypointDetection | 关键点检测,输入图像,返回图像中人物行为的各个关键点坐标和置信度 | [KeyPointDetectionResult](../../docs/api/vision_results/keypointdetection_result.md) |
|
||||
| FaceRecognition | 人脸识别,输入图像,返回可用于相似度计算的人脸特征的embedding | [FaceRecognitionResult](../../docs/api/vision_results/face_recognition_result.md) |
|
||||
| Matting | 抠图,输入图像,返回图片的前景每个像素点的Alpha值 | [MattingResult](../../docs/api/vision_results/matting_result.md) |
|
||||
| OCR | 文本框检测,分类,文本框内容识别,输入图像,返回文本框坐标,文本框的方向类别以及框内的文本内容 | [OCRResult](../../docs/api/vision_results/ocr_result.md) |
|
||||
| 任务类型 | 说明 | 预测结果结构体 |
|
||||
|:------------------|:------------------------------------------------|:-------------------------------------------------------------------------------------|
|
||||
| Detection | 目标检测,输入图像,检测图像中物体位置,并返回检测框坐标及类别和置信度 | [DetectionResult](../../docs/api/vision_results/detection_result.md) |
|
||||
| Segmentation | 语义分割,输入图像,给出图像中每个像素的分类及置信度 | [SegmentationResult](../../docs/api/vision_results/segmentation_result.md) |
|
||||
| Classification | 图像分类,输入图像,给出图像的分类结果和置信度 | [ClassifyResult](../../docs/api/vision_results/classification_result.md) |
|
||||
| FaceDetection | 人脸检测,输入图像,检测图像中人脸位置,并返回检测框坐标及人脸关键点 | [FaceDetectionResult](../../docs/api/vision_results/face_detection_result.md) |
|
||||
| KeypointDetection | 关键点检测,输入图像,返回图像中人物行为的各个关键点坐标和置信度 | [KeyPointDetectionResult](../../docs/api/vision_results/keypointdetection_result.md) |
|
||||
| FaceRecognition | 人脸识别,输入图像,返回可用于相似度计算的人脸特征的embedding | [FaceRecognitionResult](../../docs/api/vision_results/face_recognition_result.md) |
|
||||
| Matting | 抠图,输入图像,返回图片的前景每个像素点的Alpha值 | [MattingResult](../../docs/api/vision_results/matting_result.md) |
|
||||
| OCR | 文本框检测,分类,文本框内容识别,输入图像,返回文本框坐标,文本框的方向类别以及框内的文本内容 | [OCRResult](../../docs/api/vision_results/ocr_result.md) |
|
||||
| MOT | 多目标跟踪,输入图像,检测图像中物体位置,并返回检测框坐标,对象id及类别置信度 | [MOTResult](../../docs/api/vision_results/mot_result.md) |
|
||||
|
||||
## FastDeploy API设计
|
||||
|
||||
视觉模型具有较有统一任务范式,在设计API时(包括C++/Python),FastDeploy将视觉模型的部署拆分为四个步骤
|
||||
|
@@ -33,25 +33,29 @@ void CpuInfer(const std::string& model_dir, const std::string& video_file) {
|
||||
}
|
||||
|
||||
fastdeploy::vision::MOTResult result;
|
||||
fastdeploy::vision::tracking::TrailRecorder recorder;
|
||||
// during each prediction, data is inserted into the recorder. As the number of predictions increases,
|
||||
// the memory will continue to grow. You can cancel the insertion through 'UnbindRecorder'.
|
||||
// int count = 0; // unbind condition
|
||||
model.BindRecorder(&recorder);
|
||||
cv::Mat frame;
|
||||
int frame_id=0;
|
||||
cv::VideoCapture capture(video_file);
|
||||
// according to the time of prediction to calculate fps
|
||||
float fps= 0.0f;
|
||||
while (capture.read(frame)) {
|
||||
if (frame.empty()) {
|
||||
break;
|
||||
break;
|
||||
}
|
||||
if (!model.Predict(&frame, &result)) {
|
||||
std::cerr << "Failed to predict." << std::endl;
|
||||
return;
|
||||
std::cerr << "Failed to predict." << std::endl;
|
||||
return;
|
||||
}
|
||||
// such as adding this code can cancel trail datat bind
|
||||
// if(count++ == 10) model.UnbindRecorder();
|
||||
// std::cout << result.Str() << std::endl;
|
||||
cv::Mat out_img = fastdeploy::vision::VisMOT(frame, result, fps , frame_id);
|
||||
cv::Mat out_img = fastdeploy::vision::VisMOT(frame, result, 0.0, &recorder);
|
||||
cv::imshow("mot",out_img);
|
||||
cv::waitKey(30);
|
||||
frame_id++;
|
||||
}
|
||||
model.UnbindRecorder();
|
||||
capture.release();
|
||||
cv::destroyAllWindows();
|
||||
}
|
||||
@@ -72,25 +76,29 @@ void GpuInfer(const std::string& model_dir, const std::string& video_file) {
|
||||
}
|
||||
|
||||
fastdeploy::vision::MOTResult result;
|
||||
fastdeploy::vision::tracking::TrailRecorder trail_recorder;
|
||||
// during each prediction, data is inserted into the recorder. As the number of predictions increases,
|
||||
// the memory will continue to grow. You can cancel the insertion through 'UnbindRecorder'.
|
||||
// int count = 0; // unbind condition
|
||||
model.BindRecorder(&trail_recorder);
|
||||
cv::Mat frame;
|
||||
int frame_id=0;
|
||||
cv::VideoCapture capture(video_file);
|
||||
// according to the time of prediction to calculate fps
|
||||
float fps= 0.0f;
|
||||
while (capture.read(frame)) {
|
||||
if (frame.empty()) {
|
||||
break;
|
||||
break;
|
||||
}
|
||||
if (!model.Predict(&frame, &result)) {
|
||||
std::cerr << "Failed to predict." << std::endl;
|
||||
return;
|
||||
std::cerr << "Failed to predict." << std::endl;
|
||||
return;
|
||||
}
|
||||
// such as adding this code can cancel trail datat bind
|
||||
//if(count++ == 10) model.UnbindRecorder();
|
||||
// std::cout << result.Str() << std::endl;
|
||||
cv::Mat out_img = fastdeploy::vision::VisMOT(frame, result, fps , frame_id);
|
||||
cv::Mat out_img = fastdeploy::vision::VisMOT(frame, result, 0.0, &trail_recorder);
|
||||
cv::imshow("mot",out_img);
|
||||
cv::waitKey(30);
|
||||
frame_id++;
|
||||
}
|
||||
model.UnbindRecorder();
|
||||
capture.release();
|
||||
cv::destroyAllWindows();
|
||||
}
|
||||
@@ -112,11 +120,13 @@ void TrtInfer(const std::string& model_dir, const std::string& video_file) {
|
||||
}
|
||||
|
||||
fastdeploy::vision::MOTResult result;
|
||||
fastdeploy::vision::tracking::TrailRecorder recorder;
|
||||
//during each prediction, data is inserted into the recorder. As the number of predictions increases,
|
||||
//the memory will continue to grow. You can cancel the insertion through 'UnbindRecorder'.
|
||||
// int count = 0; // unbind condition
|
||||
model.BindRecorder(&recorder);
|
||||
cv::Mat frame;
|
||||
int frame_id=0;
|
||||
cv::VideoCapture capture(video_file);
|
||||
// according to the time of prediction to calculate fps
|
||||
float fps= 0.0f;
|
||||
while (capture.read(frame)) {
|
||||
if (frame.empty()) {
|
||||
break;
|
||||
@@ -125,12 +135,14 @@ void TrtInfer(const std::string& model_dir, const std::string& video_file) {
|
||||
std::cerr << "Failed to predict." << std::endl;
|
||||
return;
|
||||
}
|
||||
// such as adding this code can cancel trail datat bind
|
||||
// if(count++ == 10) model.UnbindRecorder();
|
||||
// std::cout << result.Str() << std::endl;
|
||||
cv::Mat out_img = fastdeploy::vision::VisMOT(frame, result, fps , frame_id);
|
||||
cv::Mat out_img = fastdeploy::vision::VisMOT(frame, result, 0.0, &recorder);
|
||||
cv::imshow("mot",out_img);
|
||||
cv::waitKey(30);
|
||||
frame_id++;
|
||||
}
|
||||
model.UnbindRecorder();
|
||||
capture.release();
|
||||
cv::destroyAllWindows();
|
||||
}
|
||||
|
@@ -14,7 +14,6 @@
|
||||
|
||||
import fastdeploy as fd
|
||||
import cv2
|
||||
import time
|
||||
import os
|
||||
|
||||
|
||||
@@ -60,20 +59,26 @@ config_file = os.path.join(args.model, "infer_cfg.yml")
|
||||
model = fd.vision.tracking.PPTracking(
|
||||
model_file, params_file, config_file, runtime_option=runtime_option)
|
||||
|
||||
# 初始化轨迹记录器
|
||||
recorder = fd.vision.tracking.TrailRecorder()
|
||||
# 绑定记录器 注意:每次预测时,往trail_recorder里面插入数据,随着预测次数的增加,内存会不断地增长,
|
||||
# 可以通过unbind_recorder()方法来解除绑定
|
||||
model.bind_recorder(recorder)
|
||||
# 预测图片分割结果
|
||||
cap = cv2.VideoCapture(args.video)
|
||||
frame_id = 0
|
||||
# count = 0
|
||||
while True:
|
||||
start_time = time.time()
|
||||
frame_id = frame_id+1
|
||||
_, frame = cap.read()
|
||||
if frame is None:
|
||||
break
|
||||
result = model.predict(frame)
|
||||
end_time = time.time()
|
||||
fps = 1.0/(end_time-start_time)
|
||||
img = fd.vision.vis_mot(frame, result, fps, frame_id)
|
||||
# count += 1
|
||||
# if count == 10:
|
||||
# model.unbind_recorder()
|
||||
img = fd.vision.vis_mot(frame, result, 0.0, recorder)
|
||||
cv2.imshow("video", img)
|
||||
cv2.waitKey(30)
|
||||
if cv2.waitKey(30) == ord("q"):
|
||||
break
|
||||
model.unbind_recorder()
|
||||
cap.release()
|
||||
cv2.destroyAllWindows()
|
||||
|
Reference in New Issue
Block a user