mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-06 17:17:14 +08:00
Refine code structure (#89)
* refine code structure * refine code structure
This commit is contained in:
14
examples/vision/detection/yolov7/cpp/CMakeLists.txt
Normal file
14
examples/vision/detection/yolov7/cpp/CMakeLists.txt
Normal file
@@ -0,0 +1,14 @@
|
||||
PROJECT(infer_demo C CXX)
|
||||
CMAKE_MINIMUM_REQUIRED (VERSION 3.12)
|
||||
|
||||
# 指定下载解压后的fastdeploy库路径
|
||||
option(FASTDEPLOY_INSTALL_DIR "Path of downloaded fastdeploy sdk.")
|
||||
|
||||
include(${FASTDEPLOY_INSTALL_DIR}/FastDeploy.cmake)
|
||||
|
||||
# 添加FastDeploy依赖头文件
|
||||
include_directories(${FASTDEPLOY_INCS})
|
||||
|
||||
add_executable(infer_demo ${PROJECT_SOURCE_DIR}/infer.cc)
|
||||
# 添加FastDeploy库依赖
|
||||
target_link_libraries(infer_demo ${FASTDEPLOY_LIBS})
|
77
examples/vision/detection/yolov7/cpp/README.md
Normal file
77
examples/vision/detection/yolov7/cpp/README.md
Normal file
@@ -0,0 +1,77 @@
|
||||
# YOLOv7 C++部署示例
|
||||
|
||||
本目录下提供`infer.cc`快速完成YOLOv7在CPU/GPU,以及GPU上通过TensorRT加速部署的示例。
|
||||
|
||||
在部署前,需确认以下两个步骤
|
||||
|
||||
- 1. 软硬件环境满足要求,参考[FastDeploy环境要求](../../../../../docs/quick_start/requirements.md)
|
||||
- 2. 根据开发环境,下载预编译部署库和samples代码,参考[FastDeploy预编译库](../../../../../docs/compile/prebuild_libraries.md)
|
||||
|
||||
以Linux上CPU推理为例,在本目录执行如下命令即可完成编译测试
|
||||
|
||||
```
|
||||
mkdir build
|
||||
cd build
|
||||
wget https://xxx.tgz
|
||||
tar xvf fastdeploy-linux-x64-0.2.0.tgz
|
||||
cmake .. -DFASTDEPLOY_INSTALL_DIR=${PWD}/fastdeploy-linux-x64-0.2.0
|
||||
make -j
|
||||
|
||||
#下载官方转换好的yolov7模型文件和测试图片
|
||||
wget https://bj.bcebos.com/paddlehub/fastdeploy/yolov7.onnx
|
||||
wget https://gitee.com/paddlepaddle/PaddleDetection/raw/release/2.4/demo/000000087038.jpg
|
||||
|
||||
|
||||
# CPU推理
|
||||
./infer_demo yolov7.onnx 000000087038.jpg 0
|
||||
# GPU推理
|
||||
./infer_demo yolov7.onnx 000000087038.jpg 1
|
||||
# GPU上TensorRT推理
|
||||
./infer_demo yolov7.onnx 000000087038.jpg 2
|
||||
```
|
||||
|
||||
## YOLOv7 C++接口
|
||||
|
||||
### YOLOv7类
|
||||
|
||||
```
|
||||
fastdeploy::vision::detection::YOLOv7(
|
||||
const string& model_file,
|
||||
const string& params_file = "",
|
||||
const RuntimeOption& runtime_option = RuntimeOption(),
|
||||
const Frontend& model_format = Frontend::ONNX)
|
||||
```
|
||||
|
||||
YOLOv7模型加载和初始化,其中model_file为导出的ONNX模型格式。
|
||||
|
||||
**参数**
|
||||
|
||||
> * **model_file**(str): 模型文件路径
|
||||
> * **params_file**(str): 参数文件路径,当模型格式为ONNX时,此参数传入空字符串即可
|
||||
> * **runtime_option**(RuntimeOption): 后端推理配置,默认为None,即采用默认配置
|
||||
> * **model_format**(Frontend): 模型格式,默认为ONNX格式
|
||||
|
||||
#### Predict函数
|
||||
|
||||
> ```
|
||||
> YOLOv7::Predict(cv::Mat* im, DetectionResult* result,
|
||||
> float conf_threshold = 0.25,
|
||||
> float nms_iou_threshold = 0.5)
|
||||
> ```
|
||||
>
|
||||
> 模型预测接口,输入图像直接输出检测结果。
|
||||
>
|
||||
> **参数**
|
||||
>
|
||||
> > * **im**: 输入图像,注意需为HWC,BGR格式
|
||||
> > * **result**: 检测结果,包括检测框,各个框的置信度, DetectionResult说明参考[视觉模型预测结果](../../../../../docs/api/vision_results/)
|
||||
> > * **conf_threshold**: 检测框置信度过滤阈值
|
||||
> > * **nms_iou_threshold**: NMS处理过程中iou阈值
|
||||
|
||||
### 类成员变量
|
||||
|
||||
> > * **size**(vector<int>): 通过此参数修改预处理过程中resize的大小,包含两个整型元素,表示[width, height], 默认值为[640, 640]
|
||||
|
||||
- [模型介绍](../../)
|
||||
- [Python部署](../python)
|
||||
- [视觉模型预测结果](../../../../../docs/api/vision_results/)
|
105
examples/vision/detection/yolov7/cpp/infer.cc
Normal file
105
examples/vision/detection/yolov7/cpp/infer.cc
Normal file
@@ -0,0 +1,105 @@
|
||||
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
#include "fastdeploy/vision.h"
|
||||
|
||||
void CpuInfer(const std::string& model_file, const std::string& image_file) {
|
||||
auto model = fastdeploy::vision::detection::YOLOv7(model_file);
|
||||
if (!model.Initialized()) {
|
||||
std::cerr << "Failed to initialize." << std::endl;
|
||||
return;
|
||||
}
|
||||
|
||||
auto im = cv::imread(image_file);
|
||||
auto im_bak = im.clone();
|
||||
|
||||
fastdeploy::vision::DetectionResult res;
|
||||
if (!model.Predict(&im, &res)) {
|
||||
std::cerr << "Failed to predict." << std::endl;
|
||||
return;
|
||||
}
|
||||
|
||||
auto vis_im = fastdeploy::vision::Visualize::VisDetection(im_bak, res);
|
||||
cv::imwrite("vis_result.jpg", vis_im);
|
||||
std::cout << "Visualized result saved in ./vis_result.jpg" << std::endl;
|
||||
}
|
||||
|
||||
void GpuInfer(const std::string& model_file, const std::string& image_file) {
|
||||
auto option = fastdeploy::RuntimeOption();
|
||||
option.UseGpu();
|
||||
auto model = fastdeploy::vision::detection::YOLOv7(model_file, "", option);
|
||||
if (!model.Initialized()) {
|
||||
std::cerr << "Failed to initialize." << std::endl;
|
||||
return;
|
||||
}
|
||||
|
||||
auto im = cv::imread(image_file);
|
||||
auto im_bak = im.clone();
|
||||
|
||||
fastdeploy::vision::DetectionResult res;
|
||||
if (!model.Predict(&im, &res)) {
|
||||
std::cerr << "Failed to predict." << std::endl;
|
||||
return;
|
||||
}
|
||||
|
||||
auto vis_im = fastdeploy::vision::Visualize::VisDetection(im_bak, res);
|
||||
cv::imwrite("vis_result.jpg", vis_im);
|
||||
std::cout << "Visualized result saved in ./vis_result.jpg" << std::endl;
|
||||
}
|
||||
|
||||
void TrtInfer(const std::string& model_file, const std::string& image_file) {
|
||||
auto option = fastdeploy::RuntimeOption();
|
||||
option.UseGpu();
|
||||
option.UseTrtBackend();
|
||||
option.SetTrtInputShape("images", {1, 3, 640, 640});
|
||||
auto model = fastdeploy::vision::detection::YOLOv7(model_file, "", option);
|
||||
if (!model.Initialized()) {
|
||||
std::cerr << "Failed to initialize." << std::endl;
|
||||
return;
|
||||
}
|
||||
|
||||
auto im = cv::imread(image_file);
|
||||
auto im_bak = im.clone();
|
||||
|
||||
fastdeploy::vision::DetectionResult res;
|
||||
if (!model.Predict(&im, &res)) {
|
||||
std::cerr << "Failed to predict." << std::endl;
|
||||
return;
|
||||
}
|
||||
|
||||
auto vis_im = fastdeploy::vision::Visualize::VisDetection(im_bak, res);
|
||||
cv::imwrite("vis_result.jpg", vis_im);
|
||||
std::cout << "Visualized result saved in ./vis_result.jpg" << std::endl;
|
||||
}
|
||||
|
||||
int main(int argc, char* argv[]) {
|
||||
if (argc < 4) {
|
||||
std::cout << "Usage: infer_demo path/to/model path/to/image run_option, "
|
||||
"e.g ./infer_model ./yolov7.onnx ./test.jpeg 0"
|
||||
<< std::endl;
|
||||
std::cout << "The data type of run_option is int, 0: run with cpu; 1: run "
|
||||
"with gpu; 2: run with gpu and use tensorrt backend."
|
||||
<< std::endl;
|
||||
return -1;
|
||||
}
|
||||
|
||||
if (std::atoi(argv[3]) == 0) {
|
||||
CpuInfer(argv[1], argv[2]);
|
||||
} else if (std::atoi(argv[3]) == 1) {
|
||||
GpuInfer(argv[1], argv[2]);
|
||||
} else if (std::atoi(argv[3]) == 2) {
|
||||
TrtInfer(argv[1], argv[2]);
|
||||
}
|
||||
return 0;
|
||||
}
|
Reference in New Issue
Block a user