mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-10 19:10:20 +08:00
Merge branch 'develop' of https://github.com/PaddlePaddle/FastDeploy into develop
This commit is contained in:
@@ -1,16 +1,16 @@
|
||||
# FastDeploy Runtime推理示例
|
||||
# FastDeploy Runtime examples
|
||||
|
||||
| 示例代码 | 编程语言 | 说明 |
|
||||
| Example Code | Program Language | Description |
|
||||
| :------- | :------- | :---- |
|
||||
| python/infer_paddle_paddle_inference.py | Python | paddle模型通过paddle inference在cpu/gpu上的推理 |
|
||||
| python/infer_paddle_tensorrt.py | Python | paddle模型通过tensorrt在gpu上的推理 |
|
||||
| python/infer_paddle_openvino.py | Python | paddle模型通过openvino在cpu上的推理 |
|
||||
| python/infer_paddle_onnxruntime.py | Python | paddle模型通过onnx runtime在cpu/gpu上的推理 |
|
||||
| python/infer_onnx_openvino.py | Python | onnx模型通过openvino在cpu上的推理 |
|
||||
| python/infer_onnx_tensorrt.py | Python | onnx模型通过tensorrt在gpu上的推理 |
|
||||
| cpp/infer_paddle_paddle_inference.cc | C++ | paddle模型通过paddle inference在cpu/gpu上的推理 |
|
||||
| cpp/infer_paddle_tensorrt.cc | C++ | paddle模型通过tensorrt在gpu上的推理 |
|
||||
| cpp/infer_paddle_openvino.cc | C++ | paddle模型通过openvino在cpu上的推理 |
|
||||
| cpp/infer_paddle_onnxruntime.cc | C++ | paddle模型通过onnx runtime在cpu/gpu上的推理 |
|
||||
| cpp/infer_onnx_openvino.cc | C++ | onnx模型通过openvino在cpu上的推理 |
|
||||
| cpp/infer_onnx_tensorrt.cc | C++ | onnx模型通过tensorrt在gpu上的推理 |
|
||||
| python/infer_paddle_paddle_inference.py | Python | Deploy Paddle model with Paddle Inference(CPU/GPU) |
|
||||
| python/infer_paddle_tensorrt.py | Python | Deploy Paddle model with TensorRT(GPU) |
|
||||
| python/infer_paddle_openvino.py | Python | Deploy Paddle model with OpenVINO(CPU) |
|
||||
| python/infer_paddle_onnxruntime.py | Python | Deploy Paddle model with ONNX Runtime(CPU/GPU) |
|
||||
| python/infer_onnx_openvino.py | Python | Deploy ONNX model with OpenVINO(CPU) |
|
||||
| python/infer_onnx_tensorrt.py | Python | Deploy ONNX model with TensorRT(GPU) |
|
||||
| cpp/infer_paddle_paddle_inference.cc | C++ | Deploy Paddle model with Paddle Inference(CPU/GPU) |
|
||||
| cpp/infer_paddle_tensorrt.cc | C++ | Deploy Paddle model with TensorRT(GPU) |
|
||||
| cpp/infer_paddle_openvino.cc | C++ | Deploy Paddle model with OpenVINO(CPU |
|
||||
| cpp/infer_paddle_onnxruntime.cc | C++ | Deploy Paddle model with ONNX Runtime(CPU/GPU) |
|
||||
| cpp/infer_onnx_openvino.cc | C++ | Deploy ONNX model with OpenVINO(CPU) |
|
||||
| cpp/infer_onnx_tensorrt.cc | C++ | Deploy ONNX model with TensorRT(GPU) |
|
||||
|
@@ -19,7 +19,7 @@ namespace vision {
|
||||
Normalize::Normalize(const std::vector<float>& mean,
|
||||
const std::vector<float>& std, bool is_scale,
|
||||
const std::vector<float>& min,
|
||||
const std::vector<float>& max) {
|
||||
const std::vector<float>& max, bool swap_rb) {
|
||||
FDASSERT(mean.size() == std.size(),
|
||||
"Normalize: requires the size of mean equal to the size of std.");
|
||||
std::vector<double> mean_(mean.begin(), mean.end());
|
||||
@@ -50,6 +50,7 @@ Normalize::Normalize(const std::vector<float>& mean,
|
||||
alpha_.push_back(alpha);
|
||||
beta_.push_back(beta);
|
||||
}
|
||||
swap_rb_ = swap_rb;
|
||||
}
|
||||
|
||||
bool Normalize::ImplByOpenCV(Mat* mat) {
|
||||
@@ -57,6 +58,7 @@ bool Normalize::ImplByOpenCV(Mat* mat) {
|
||||
|
||||
std::vector<cv::Mat> split_im;
|
||||
cv::split(*im, split_im);
|
||||
if (swap_rb_) std::swap(split_im[0], split_im[2]);
|
||||
for (int c = 0; c < im->channels(); c++) {
|
||||
split_im[c].convertTo(split_im[c], CV_32FC1, alpha_[c], beta_[c]);
|
||||
}
|
||||
@@ -79,9 +81,13 @@ bool Normalize::ImplByFlyCV(Mat* mat) {
|
||||
std[i] = 1.0 / alpha_[i];
|
||||
mean[i] = -1 * beta_[i] * std[i];
|
||||
}
|
||||
|
||||
std::vector<uint32_t> channel_reorder_index = {0, 1, 2};
|
||||
if (swap_rb_) std::swap(channel_reorder_index[0], channel_reorder_index[2]);
|
||||
|
||||
fcv::Mat new_im(im->width(), im->height(),
|
||||
fcv::FCVImageType::PKG_BGR_F32);
|
||||
fcv::normalize_to_submean_to_reorder(*im, mean, std, std::vector<uint32_t>(),
|
||||
fcv::normalize_to_submean_to_reorder(*im, mean, std, channel_reorder_index,
|
||||
new_im, true);
|
||||
mat->SetMat(new_im);
|
||||
return true;
|
||||
@@ -91,8 +97,8 @@ bool Normalize::ImplByFlyCV(Mat* mat) {
|
||||
bool Normalize::Run(Mat* mat, const std::vector<float>& mean,
|
||||
const std::vector<float>& std, bool is_scale,
|
||||
const std::vector<float>& min,
|
||||
const std::vector<float>& max, ProcLib lib) {
|
||||
auto n = Normalize(mean, std, is_scale, min, max);
|
||||
const std::vector<float>& max, ProcLib lib, bool swap_rb) {
|
||||
auto n = Normalize(mean, std, is_scale, min, max, swap_rb);
|
||||
return n(mat, lib);
|
||||
}
|
||||
|
||||
|
@@ -23,7 +23,8 @@ class FASTDEPLOY_DECL Normalize : public Processor {
|
||||
Normalize(const std::vector<float>& mean, const std::vector<float>& std,
|
||||
bool is_scale = true,
|
||||
const std::vector<float>& min = std::vector<float>(),
|
||||
const std::vector<float>& max = std::vector<float>());
|
||||
const std::vector<float>& max = std::vector<float>(),
|
||||
bool swap_rb = false);
|
||||
bool ImplByOpenCV(Mat* mat);
|
||||
#ifdef ENABLE_FLYCV
|
||||
bool ImplByFlyCV(Mat* mat);
|
||||
@@ -44,14 +45,23 @@ class FASTDEPLOY_DECL Normalize : public Processor {
|
||||
const std::vector<float>& std, bool is_scale = true,
|
||||
const std::vector<float>& min = std::vector<float>(),
|
||||
const std::vector<float>& max = std::vector<float>(),
|
||||
ProcLib lib = ProcLib::DEFAULT);
|
||||
ProcLib lib = ProcLib::DEFAULT, bool swap_rb = false);
|
||||
|
||||
std::vector<float> GetAlpha() const { return alpha_; }
|
||||
std::vector<float> GetBeta() const { return beta_; }
|
||||
|
||||
bool GetSwapRB() {
|
||||
return swap_rb_;
|
||||
}
|
||||
|
||||
void SetSwapRB(bool swap_rb) {
|
||||
swap_rb_ = swap_rb;
|
||||
}
|
||||
|
||||
private:
|
||||
std::vector<float> alpha_;
|
||||
std::vector<float> beta_;
|
||||
bool swap_rb_;
|
||||
};
|
||||
} // namespace vision
|
||||
} // namespace fastdeploy
|
||||
|
@@ -21,7 +21,8 @@ NormalizeAndPermute::NormalizeAndPermute(const std::vector<float>& mean,
|
||||
const std::vector<float>& std,
|
||||
bool is_scale,
|
||||
const std::vector<float>& min,
|
||||
const std::vector<float>& max) {
|
||||
const std::vector<float>& max,
|
||||
bool swap_rb) {
|
||||
FDASSERT(mean.size() == std.size(),
|
||||
"Normalize: requires the size of mean equal to the size of std.");
|
||||
std::vector<double> mean_(mean.begin(), mean.end());
|
||||
@@ -52,6 +53,7 @@ NormalizeAndPermute::NormalizeAndPermute(const std::vector<float>& mean,
|
||||
alpha_.push_back(alpha);
|
||||
beta_.push_back(beta);
|
||||
}
|
||||
swap_rb_ = swap_rb;
|
||||
}
|
||||
|
||||
bool NormalizeAndPermute::ImplByOpenCV(Mat* mat) {
|
||||
@@ -60,6 +62,7 @@ bool NormalizeAndPermute::ImplByOpenCV(Mat* mat) {
|
||||
int origin_h = im->rows;
|
||||
std::vector<cv::Mat> split_im;
|
||||
cv::split(*im, split_im);
|
||||
if (swap_rb_) std::swap(split_im[0], split_im[2]);
|
||||
for (int c = 0; c < im->channels(); c++) {
|
||||
split_im[c].convertTo(split_im[c], CV_32FC1, alpha_[c], beta_[c]);
|
||||
}
|
||||
@@ -94,8 +97,12 @@ bool NormalizeAndPermute::ImplByFlyCV(Mat* mat) {
|
||||
std[i] = 1.0 / alpha_[i];
|
||||
mean[i] = -1 * beta_[i] * std[i];
|
||||
}
|
||||
|
||||
std::vector<uint32_t> channel_reorder_index = {0, 1, 2};
|
||||
if (swap_rb_) std::swap(channel_reorder_index[0], channel_reorder_index[2]);
|
||||
|
||||
fcv::Mat new_im;
|
||||
fcv::normalize_to_submean_to_reorder(*im, mean, std, std::vector<uint32_t>(),
|
||||
fcv::normalize_to_submean_to_reorder(*im, mean, std, channel_reorder_index,
|
||||
new_im, false);
|
||||
mat->SetMat(new_im);
|
||||
mat->layout = Layout::CHW;
|
||||
@@ -106,8 +113,9 @@ bool NormalizeAndPermute::ImplByFlyCV(Mat* mat) {
|
||||
bool NormalizeAndPermute::Run(Mat* mat, const std::vector<float>& mean,
|
||||
const std::vector<float>& std, bool is_scale,
|
||||
const std::vector<float>& min,
|
||||
const std::vector<float>& max, ProcLib lib) {
|
||||
auto n = NormalizeAndPermute(mean, std, is_scale, min, max);
|
||||
const std::vector<float>& max, ProcLib lib,
|
||||
bool swap_rb) {
|
||||
auto n = NormalizeAndPermute(mean, std, is_scale, min, max, swap_rb);
|
||||
return n(mat, lib);
|
||||
}
|
||||
|
||||
|
@@ -23,7 +23,8 @@ class FASTDEPLOY_DECL NormalizeAndPermute : public Processor {
|
||||
NormalizeAndPermute(const std::vector<float>& mean,
|
||||
const std::vector<float>& std, bool is_scale = true,
|
||||
const std::vector<float>& min = std::vector<float>(),
|
||||
const std::vector<float>& max = std::vector<float>());
|
||||
const std::vector<float>& max = std::vector<float>(),
|
||||
bool swap_rb = false);
|
||||
bool ImplByOpenCV(Mat* mat);
|
||||
#ifdef ENABLE_FLYCV
|
||||
bool ImplByFlyCV(Mat* mat);
|
||||
@@ -44,7 +45,7 @@ class FASTDEPLOY_DECL NormalizeAndPermute : public Processor {
|
||||
const std::vector<float>& std, bool is_scale = true,
|
||||
const std::vector<float>& min = std::vector<float>(),
|
||||
const std::vector<float>& max = std::vector<float>(),
|
||||
ProcLib lib = ProcLib::DEFAULT);
|
||||
ProcLib lib = ProcLib::DEFAULT, bool swap_rb = false);
|
||||
|
||||
void SetAlpha(const std::vector<float>& alpha) {
|
||||
alpha_.clear();
|
||||
@@ -58,9 +59,18 @@ class FASTDEPLOY_DECL NormalizeAndPermute : public Processor {
|
||||
beta_.assign(beta.begin(), beta.end());
|
||||
}
|
||||
|
||||
bool GetSwapRB() {
|
||||
return swap_rb_;
|
||||
}
|
||||
|
||||
void SetSwapRB(bool swap_rb) {
|
||||
swap_rb_ = swap_rb;
|
||||
}
|
||||
|
||||
private:
|
||||
std::vector<float> alpha_;
|
||||
std::vector<float> beta_;
|
||||
bool swap_rb_;
|
||||
};
|
||||
} // namespace vision
|
||||
} // namespace fastdeploy
|
||||
|
@@ -95,10 +95,77 @@ void FuseNormalizeHWC2CHW(
|
||||
<< std::endl;
|
||||
}
|
||||
|
||||
void FuseNormalizeColorConvert(
|
||||
std::vector<std::shared_ptr<Processor>>* processors) {
|
||||
// Fuse Normalize and BGR2RGB/RGB2BGR
|
||||
int normalize_index = -1;
|
||||
int color_convert_index = -1;
|
||||
// If these middle processors are after BGR2RGB/RGB2BGR and before Normalize,
|
||||
// we can still fuse Normalize and BGR2RGB/RGB2BGR
|
||||
static std::unordered_set<std::string> middle_processors(
|
||||
{"Resize", "ResizeByShort", "ResizeByLong", "Crop", "CenterCrop",
|
||||
"LimitByStride", "LimitShort", "Pad", "PadToSize", "StridePad",
|
||||
"WarpAffine"});
|
||||
|
||||
for (size_t i = 0; i < processors->size(); ++i) {
|
||||
if ((*processors)[i]->Name() == "BGR2RGB" ||
|
||||
(*processors)[i]->Name() == "RGB2BGR") {
|
||||
color_convert_index = i;
|
||||
for (size_t j = color_convert_index + 1; j < processors->size(); ++j) {
|
||||
if ((*processors)[j]->Name() == "Normalize" ||
|
||||
(*processors)[j]->Name() == "NormalizeAndPermute") {
|
||||
normalize_index = j;
|
||||
break;
|
||||
}
|
||||
}
|
||||
if (normalize_index < 0) {
|
||||
return;
|
||||
}
|
||||
for (size_t j = color_convert_index + 1; j < normalize_index; ++j) {
|
||||
if (middle_processors.count((*processors)[j]->Name())) {
|
||||
continue;
|
||||
}
|
||||
return;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if (color_convert_index < 0) {
|
||||
return;
|
||||
}
|
||||
|
||||
// Delete Color Space Convert
|
||||
std::string color_processor_name = (*processors)[color_convert_index]->Name();
|
||||
processors->erase(processors->begin() + color_convert_index);
|
||||
|
||||
// Toggle the swap_rb option of the Normalize processor
|
||||
std::string normalize_processor_name =
|
||||
(*processors)[normalize_index - 1]->Name();
|
||||
bool swap_rb;
|
||||
if (normalize_processor_name == "Normalize") {
|
||||
auto processor = dynamic_cast<Normalize*>(
|
||||
(*processors)[normalize_index - 1].get());
|
||||
swap_rb = processor->GetSwapRB();
|
||||
processor->SetSwapRB(!swap_rb);
|
||||
} else if (normalize_processor_name == "NormalizeAndPermute") {
|
||||
auto processor = dynamic_cast<NormalizeAndPermute*>(
|
||||
(*processors)[normalize_index - 1].get());
|
||||
swap_rb = processor->GetSwapRB();
|
||||
processor->SetSwapRB(!swap_rb);
|
||||
} else {
|
||||
FDASSERT(false, "Something wrong in FuseNormalizeColorConvert().");
|
||||
}
|
||||
|
||||
FDINFO << color_processor_name << " and " << normalize_processor_name
|
||||
<< " are fused to " << normalize_processor_name
|
||||
<< " with swap_rb=" << !swap_rb << std::endl;
|
||||
}
|
||||
|
||||
void FuseTransforms(
|
||||
std::vector<std::shared_ptr<Processor>>* processors) {
|
||||
FuseNormalizeCast(processors);
|
||||
FuseNormalizeHWC2CHW(processors);
|
||||
FuseNormalizeColorConvert(processors);
|
||||
}
|
||||
|
||||
|
||||
|
@@ -31,6 +31,7 @@
|
||||
#include "fastdeploy/vision/common/processors/resize_by_short.h"
|
||||
#include "fastdeploy/vision/common/processors/stride_pad.h"
|
||||
#include "fastdeploy/vision/common/processors/warp_affine.h"
|
||||
#include <unordered_set>
|
||||
|
||||
namespace fastdeploy {
|
||||
namespace vision {
|
||||
@@ -41,6 +42,9 @@ void FuseTransforms(std::vector<std::shared_ptr<Processor>>* processors);
|
||||
void FuseNormalizeCast(std::vector<std::shared_ptr<Processor>>* processors);
|
||||
// Fuse Normalize + HWC2CHW to NormalizeAndPermute
|
||||
void FuseNormalizeHWC2CHW(std::vector<std::shared_ptr<Processor>>* processors);
|
||||
// Fuse Normalize + Color Convert
|
||||
void FuseNormalizeColorConvert(
|
||||
std::vector<std::shared_ptr<Processor>>* processors);
|
||||
|
||||
} // namespace vision
|
||||
} // namespace fastdeploy
|
||||
|
Reference in New Issue
Block a user