mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-06 17:17:14 +08:00
[Feature] Add temp_scaled_logprobs and top_p_normalized_logprobs parameters for logits and logprobs post processing (#3536)
* [feature] Add temp_scaled_logprobs and top_p_normalized_logprobs parameters for logits and logprobs post processing * infer engine support temp_scaled_logprobs and top_p_normalized_logprobs * code check * code check * fix tokenizer.decoder(-1), return 'Invalid Token' * check seq len time shape * logprob clip inf * code check --------- Co-authored-by: sunlei1024 <sunlei5788@gmail.com>
This commit is contained in:
@@ -95,6 +95,9 @@ class SamplingParams:
|
||||
reasoning_max_tokens: Optional[int] = None
|
||||
min_tokens: int = 1
|
||||
logprobs: Optional[int] = None
|
||||
# For logits and logprobs post processing
|
||||
temp_scaled_logprobs: bool = False
|
||||
top_p_normalized_logprobs: bool = False
|
||||
bad_words: Optional[List[str]] = None
|
||||
|
||||
@classmethod
|
||||
|
@@ -333,6 +333,9 @@ class CompletionRequest(BaseModel):
|
||||
echo: Optional[bool] = False
|
||||
frequency_penalty: Optional[float] = None
|
||||
logprobs: Optional[int] = None
|
||||
# For logits and logprobs post processing
|
||||
temp_scaled_logprobs: bool = False
|
||||
top_p_normalized_logprobs: bool = False
|
||||
max_tokens: Optional[int] = None
|
||||
n: int = 1
|
||||
presence_penalty: Optional[float] = None
|
||||
@@ -461,6 +464,11 @@ class ChatCompletionRequest(BaseModel):
|
||||
frequency_penalty: Optional[float] = None
|
||||
logprobs: Optional[bool] = False
|
||||
top_logprobs: Optional[int] = 0
|
||||
|
||||
# For logits and logprobs post processing
|
||||
temp_scaled_logprobs: bool = False
|
||||
top_p_normalized_logprobs: bool = False
|
||||
|
||||
# remove max_tokens when field is removed from OpenAI API
|
||||
max_tokens: Optional[int] = Field(
|
||||
default=None,
|
||||
@@ -515,6 +523,8 @@ class ChatCompletionRequest(BaseModel):
|
||||
|
||||
req_dict["max_tokens"] = self.max_completion_tokens or self.max_tokens
|
||||
req_dict["logprobs"] = self.top_logprobs if self.logprobs else None
|
||||
req_dict["temp_scaled_logprobs"] = self.temp_scaled_logprobs
|
||||
req_dict["top_p_normalized_logprobs"] = self.top_p_normalized_logprobs
|
||||
|
||||
# parse request model into dict, priority: request params > metadata params
|
||||
if self.metadata is not None:
|
||||
|
@@ -15,7 +15,7 @@
|
||||
"""
|
||||
|
||||
from dataclasses import dataclass
|
||||
from typing import Optional
|
||||
from typing import Dict, Optional
|
||||
|
||||
import paddle
|
||||
|
||||
@@ -46,3 +46,6 @@ class SamplingMetadata:
|
||||
max_num_logprobs: Optional[int] = None
|
||||
prompt_ids: Optional[paddle.Tensor] = None
|
||||
prompt_lens: Optional[paddle.Tensor] = None
|
||||
temp_scaled_logprobs: Optional[paddle.Tensor] = None
|
||||
top_p_normalized_logprobs: Optional[paddle.Tensor] = None
|
||||
share_inputs: Optional[Dict[str, paddle.Tensor]] = None
|
||||
|
@@ -37,6 +37,18 @@ from fastdeploy.platforms import current_platform
|
||||
from fastdeploy.worker.output import LogprobsTensors, SamplerOutput
|
||||
|
||||
|
||||
def top_p_normalize_probs_paddle(
|
||||
probs: paddle.Tensor,
|
||||
top_ps: paddle.Tensor,
|
||||
):
|
||||
probs_idx = probs.argsort(axis=-1, descending=True)
|
||||
probs_sort = paddle.take_along_axis(probs, probs_idx, axis=-1)
|
||||
probs_sum = paddle.cumsum(probs_sort, axis=-1)
|
||||
probs_sort = paddle.where((probs_sum - probs_sort) > top_ps, paddle.zeros_like(probs_sort), probs_sort)
|
||||
probs_sort.divide_(probs_sort.sum(axis=-1, keepdim=True))
|
||||
return paddle.put_along_axis(paddle.zeros_like(probs_sort), probs_idx, probs_sort, -1)
|
||||
|
||||
|
||||
class SamplerProcessor:
|
||||
"""
|
||||
SamplingProcessor for guided decoding.
|
||||
@@ -194,9 +206,45 @@ class Sampler(nn.Layer):
|
||||
"""pre process before running"""
|
||||
self.processor.pre_process(skip_idx_list)
|
||||
|
||||
def compute_logprobs(self, logits: paddle.Tensor) -> paddle.Tensor:
|
||||
def compute_logprobs(
|
||||
self,
|
||||
logits: paddle.Tensor,
|
||||
sampling_metadata: SamplingMetadata,
|
||||
) -> paddle.Tensor:
|
||||
""" """
|
||||
return F.log_softmax(logits, axis=-1)
|
||||
last_logits = logits
|
||||
real_bsz = last_logits.shape[0]
|
||||
temp_scaled_logprobs = sampling_metadata.temp_scaled_logprobs
|
||||
top_p_normalized_logprobs = sampling_metadata.top_p_normalized_logprobs
|
||||
share_inputs = sampling_metadata.share_inputs
|
||||
if temp_scaled_logprobs is not None:
|
||||
real_bsz_temp_scaled = temp_scaled_logprobs[:real_bsz]
|
||||
temperature = sampling_metadata.temperature[:real_bsz]
|
||||
temp_temperature = paddle.where(real_bsz_temp_scaled, temperature, paddle.ones_like(temperature))
|
||||
last_logits = last_logits / temp_temperature
|
||||
|
||||
last_logprobs = F.log_softmax(last_logits, axis=-1)
|
||||
top_p_logprob = None
|
||||
top_p_req_mask = None
|
||||
|
||||
if top_p_normalized_logprobs is not None and share_inputs is not None:
|
||||
seq_lens_this_time = share_inputs["seq_lens_this_time"].reshape([-1, 1])[:real_bsz]
|
||||
seq_lens_encoder = share_inputs["seq_lens_encoder"].reshape([-1, 1])[:real_bsz]
|
||||
seq_lens_decoder = share_inputs["seq_lens_decoder"].reshape([-1, 1])[:real_bsz]
|
||||
seq_lens_time_sum = seq_lens_this_time + seq_lens_encoder + seq_lens_decoder
|
||||
real_req_mask = seq_lens_time_sum > 0
|
||||
top_p_req_mask = paddle.logical_and(top_p_normalized_logprobs[:real_bsz], real_req_mask)
|
||||
real_req_top_p = sampling_metadata.top_p[:real_bsz]
|
||||
# Normalize logprobs if top_p normalization is enabled
|
||||
# NOTE: only normalize logprobs when top_p is set and not equal to 1.0
|
||||
top_p_req_mask = paddle.logical_and(top_p_req_mask, real_req_top_p != 1.0)
|
||||
if top_p_req_mask.any():
|
||||
probs = F.softmax(last_logits, axis=-1)
|
||||
probs = top_p_normalize_probs_paddle(probs, real_req_top_p)
|
||||
top_p_logprob = paddle.log(probs)
|
||||
if top_p_logprob is not None:
|
||||
last_logprobs = paddle.where(top_p_req_mask, top_p_logprob, last_logprobs)
|
||||
return last_logprobs
|
||||
|
||||
def gather_logprobs(
|
||||
self,
|
||||
@@ -221,6 +269,7 @@ class Sampler(nn.Layer):
|
||||
Sampled token rank tensor, (num tokens)
|
||||
"""
|
||||
assert token_ids.dtype == paddle.int64
|
||||
logprobs.clip_(min=paddle.finfo(logprobs.dtype).min)
|
||||
# Get with the logprob of the prompt or sampled token.
|
||||
token_logprobs = paddle.take_along_axis(logprobs, token_ids, axis=-1)
|
||||
|
||||
@@ -247,7 +296,7 @@ class Sampler(nn.Layer):
|
||||
""" """
|
||||
num_logprobs = sampling_metadata.max_num_logprobs
|
||||
if num_logprobs is not None:
|
||||
raw_logprobs = self.compute_logprobs(logits)
|
||||
raw_logprobs = self.compute_logprobs(logits, sampling_metadata)
|
||||
|
||||
logits = self.processor.apply_token_mask(logits, skip_idx_list)
|
||||
|
||||
|
@@ -267,6 +267,10 @@ class GPUModelRunner(ModelRunnerBase):
|
||||
self.share_inputs["penalty_score"][idx : idx + 1] = request.get("repetition_penalty", 1.0)
|
||||
self.share_inputs["frequency_score"][idx : idx + 1] = request.get("frequency_penalty", 0.0)
|
||||
self.share_inputs["presence_score"][idx : idx + 1] = request.get("presence_penalty", 0.0)
|
||||
self.share_inputs["temp_scaled_logprobs"][idx : idx + 1] = request.get("temp_scaled_logprobs", False)
|
||||
self.share_inputs["top_p_normalized_logprobs"][idx : idx + 1] = request.get(
|
||||
"top_p_normalized_logprobs", False
|
||||
)
|
||||
|
||||
self.share_inputs["min_dec_len"][idx : idx + 1] = request.get("min_tokens", 1)
|
||||
self.share_inputs["max_dec_len"][idx : idx + 1] = request.get(
|
||||
@@ -431,6 +435,12 @@ class GPUModelRunner(ModelRunnerBase):
|
||||
self.share_inputs["presence_score"][idx : idx + 1] = get_attr_from_request(
|
||||
request, "presence_penalty", 0.0
|
||||
)
|
||||
self.share_inputs["temp_scaled_logprobs"][idx : idx + 1] = get_attr_from_request(
|
||||
request, "temp_scaled_logprobs", False
|
||||
)
|
||||
self.share_inputs["top_p_normalized_logprobs"][idx : idx + 1] = get_attr_from_request(
|
||||
request, "top_p_normalized_logprobs", False
|
||||
)
|
||||
|
||||
self.share_inputs["min_dec_len"][idx : idx + 1] = request.get("min_tokens", 1)
|
||||
self.share_inputs["max_dec_len"][idx : idx + 1] = request.get(
|
||||
@@ -543,6 +553,8 @@ class GPUModelRunner(ModelRunnerBase):
|
||||
self.share_inputs["presence_score"] = paddle.full(
|
||||
[max_num_seqs, 1], self.model_config.presence_score, dtype="float32"
|
||||
)
|
||||
self.share_inputs["temp_scaled_logprobs"] = paddle.full([max_num_seqs, 1], False, dtype="bool")
|
||||
self.share_inputs["top_p_normalized_logprobs"] = paddle.full([max_num_seqs, 1], False, dtype="bool")
|
||||
|
||||
self.share_inputs["min_dec_len"] = paddle.full([max_num_seqs, 1], self.model_config.min_length, dtype="int64")
|
||||
self.share_inputs["max_dec_len"] = paddle.full(
|
||||
@@ -748,6 +760,9 @@ class GPUModelRunner(ModelRunnerBase):
|
||||
bad_words_token_ids=self.share_inputs["bad_tokens"],
|
||||
eos_token_ids=self.share_inputs["eos_token_id"],
|
||||
max_num_logprobs=20 if self.enable_logprob else None,
|
||||
temp_scaled_logprobs=self.share_inputs["temp_scaled_logprobs"],
|
||||
top_p_normalized_logprobs=self.share_inputs["top_p_normalized_logprobs"],
|
||||
share_inputs=self.share_inputs,
|
||||
)
|
||||
|
||||
def load_model(self) -> None:
|
||||
|
Reference in New Issue
Block a user