This commit is contained in:
bukejiyu
2025-08-06 14:45:27 +08:00
committed by GitHub
parent 91dc87f1c5
commit 20839abccf
30 changed files with 1361 additions and 1087 deletions

View File

@@ -663,7 +663,7 @@ class LoadChoices(str, Enum):
DEFAULT = "default"
# only support qwen3-bf16 now
NEW_LOADER = "new_loader"
DEFAULT_V1 = "default_v1"
class LoadConfig:

View File

@@ -22,7 +22,9 @@ import paddle
from paddle import nn
from paddleformers.utils.log import logger
from fastdeploy.model_executor.layers.moe.fused_moe_backend_base import MoEMethodBase
from fastdeploy.model_executor.layers.moe.fused_moe_backend_base import (
UnquantizedFusedMoEMethod,
)
from fastdeploy.model_executor.layers.utils import (
CpuGuard,
create_and_set_parameter,
@@ -37,7 +39,7 @@ from fastdeploy.model_executor.ops.gcu import (
)
class GCUFusedMoeMethod(MoEMethodBase):
class GCUFusedMoeMethod(UnquantizedFusedMoEMethod):
"""
Use GCU to compute Fused MoE.
"""
@@ -46,28 +48,12 @@ class GCUFusedMoeMethod(MoEMethodBase):
super().__init__(quant_config)
self.group_size = -1
def create_weights(self, layer: nn.Layer, state_dict):
"""
Paddle gcu create weight process.
"""
# bf16
def process_loaded_weights(self, layer: nn.Layer, state_dict):
up_gate_proj_weights, down_proj_weights = layer.extract_moe_ffn_weights(state_dict)
stacked_up_gate_proj_weights = paddle.stack(up_gate_proj_weights, axis=0)
stacked_down_proj_weights = paddle.stack(down_proj_weights, axis=0)
for idx, weight_tensor in enumerate([stacked_up_gate_proj_weights, stacked_down_proj_weights]):
# shape [E, K, N] -> [E, N, K]
weight_tensor = paddle.transpose(weight_tensor, [0, 2, 1])
weight_name = self.added_weight_attrs[idx]
setattr(
layer,
weight_name,
layer.create_parameter(
shape=weight_tensor.shape,
dtype=weight_tensor.dtype,
default_initializer=paddle.nn.initializer.Constant(0),
),
)
getattr(layer, weight_name).set_value(weight_tensor)
layer.up_gate_proj_weight.set_value(paddle.transpose(stacked_up_gate_proj_weights, [0, 2, 1]))
layer.down_proj_weight.set_value(paddle.transpose(stacked_down_proj_weights, [0, 2, 1]))
@paddle.no_grad()
def compute_ffn(
@@ -202,18 +188,19 @@ class GCUFusedMoeMethod(MoEMethodBase):
self,
layer: nn.Layer,
x: paddle.Tensor,
gate_out: paddle.Tensor,
gate: nn.Layer,
) -> paddle.Tensor:
"""
Paddle gcu compute Fused MoE.
"""
gate_out = gate(x.cast("float32"))
return self.compute_ffn(layer, x, gate_out, enable_quant=False)
def apply_ep_prefill(
self,
layer: nn.Layer,
x: paddle.Tensor,
gate_out: paddle.Tensor,
gate: nn.Layer,
) -> paddle.Tensor:
"""
Apply the EP prefill method.
@@ -224,7 +211,7 @@ class GCUFusedMoeMethod(MoEMethodBase):
self,
layer: nn.Layer,
x: paddle.Tensor,
gate_out: paddle.Tensor,
gate: nn.Layer,
) -> paddle.Tensor:
"""
Apply the EP decoder method.
@@ -235,7 +222,7 @@ class GCUFusedMoeMethod(MoEMethodBase):
self,
layer: nn.Layer,
x: paddle.Tensor,
gate_out: paddle.Tensor,
gate: nn.Layer,
) -> paddle.Tensor:
"""
Paddle Cutlass compute Fused MoE.
@@ -400,9 +387,10 @@ class GCUWeightOnlyMoEMethod(GCUFusedMoeMethod):
self,
layer: nn.Layer,
x: paddle.Tensor,
gate_out: paddle.Tensor,
gate: nn.Layer,
) -> paddle.Tensor:
"""
Paddle gcu compute Fused MoE.
"""
gate_out = gate(x.cast("float32"))
return self.compute_ffn(layer, x, gate_out, enable_quant=True)

View File

@@ -37,7 +37,7 @@ class GCUWeightOnlyLinearMethod(WeightOnlyLinearMethod):
self.quant_config = quant_config
self.group_size = -1
def create_weights(self, layer):
def create_weights(self, layer, **extra_weight_attrs):
# The scale shape should be equal to the output dim of weight using Per-Channel Quantization.
weight_scale_shape = [layer.weight_shape[1]]
@@ -45,6 +45,14 @@ class GCUWeightOnlyLinearMethod(WeightOnlyLinearMethod):
if self.quant_config.name() == "wint4":
layer.weight_shape[0] //= 2
layer.weight_dtype = "int8"
layer.weight = layer.create_parameter(
shape=layer.weight_shape,
dtype=layer.weight_dtype,
is_bias=False,
default_initializer=paddle.nn.initializer.Constant(0),
)
layer.weight_scale = layer.create_parameter(
shape=weight_scale_shape,
dtype=layer._dtype,

View File

@@ -35,7 +35,7 @@ class XPUWeightOnlyLinearMethod(WeightOnlyLinearMethod):
) -> None:
super().__init__(quant_config)
def create_weights(self, layer: nn.Layer) -> None:
def create_weights(self, layer: nn.Layer, **extra_weight_attrs) -> None:
"""
Create weights for linear layer on XPU
"""
@@ -45,6 +45,12 @@ class XPUWeightOnlyLinearMethod(WeightOnlyLinearMethod):
if self.quant_config.name() == "weight_only_int4":
layer.weight_shape[0] //= 2
layer.weight_dtype = "int8"
layer.weight = layer.create_parameter(
shape=layer.weight_shape,
dtype=layer.weight_dtype,
is_bias=False,
default_initializer=paddle.nn.initializer.Constant(0),
)
layer.weight_scale = layer.create_parameter(
shape=weight_scale_shape,
dtype="float32",

View File

@@ -21,6 +21,7 @@ from paddle import nn
from fastdeploy.config import FDConfig
from fastdeploy.distributed.communication import tensor_model_parallel_all_reduce
from fastdeploy.model_executor.layers.quantization.quant_base import QuantMethodBase
from fastdeploy.model_executor.models.utils import (
default_weight_loader,
set_weight_attrs,
@@ -30,6 +31,45 @@ from fastdeploy.platforms import current_platform
from .utils import _set_var_distributed, divide, get_tensor
class UnquantizedLinearMethod(QuantMethodBase):
"""Linear method without quantization."""
def create_weights(self, layer: nn.Layer, **extra_weight_attrs):
"""
extra_weight_attrs is a dictionary that may include parameters like:
- split_axis: specifies which axis to split the weight tensor on (for distributed weight partitioning)
- output_dim: determines whether the split is applied along the output dimension (rows) or input dimension (columns)
- weight_loader: a callable or method responsible for loading the weight data
"""
layer.weight = layer.create_parameter(
shape=layer.weight_shape,
dtype=layer.weight_dtype,
is_bias=False,
default_initializer=paddle.nn.initializer.Constant(0),
)
set_weight_attrs(
layer.weight,
{"weight_loader": extra_weight_attrs.get("weight_loader", default_weight_loader(layer.fd_config))},
)
if hasattr(layer, "nranks") and layer.nranks > 0:
split_axis = extra_weight_attrs.get("split_axis")
_set_var_distributed(layer.weight, split_axis=split_axis)
set_weight_attrs(layer.weight, {"output_dim": extra_weight_attrs.get("output_dim")})
def process_loaded_weights(self, layer, weights) -> None:
# mlp.gate.weight is precision-sensitive, so we cast it to float32 for computation
if layer.weight.dtype != weights.dtype:
weights = weights.cast(layer.weight.dtype)
layer.weight.set_value(weights)
def apply(self, layer: nn.Layer, x: paddle.Tensor) -> paddle.Tensor:
linear_out = paddle.matmul(x, layer.weight)
if layer.with_bias:
linear_out = paddle.add(linear_out, layer.bias)
return linear_out
class LinearBase(nn.Layer):
"""
LinearBase Layer.
@@ -44,6 +84,8 @@ class LinearBase(nn.Layer):
with_bias: bool = False,
add_bias: bool = False,
skip_quant: bool = False,
weight_dtype: str = "",
weight_key: str = "",
):
"""
Initializes a linear layer and provides additional parameters required for inference and quantization.
@@ -81,46 +123,31 @@ class LinearBase(nn.Layer):
self.add_bias = add_bias
self.prefix = prefix
# key
self.weight_key = f"{prefix}.weight"
if weight_key:
self.weight_key = f"{prefix}.{weight_key}"
else:
self.weight_key = f"{prefix}.weight"
self.bias_key = f"{prefix}.bias"
self.shift_key = f"{prefix}.shift_bias"
self.smooth_key = f"{prefix}.smooth_weight"
self.out_scale_key = f"{prefix}.out_scale"
self._dtype = self._helper.get_default_dtype()
self.weight_dtype = self._dtype
if weight_dtype:
self.weight_dtype = weight_dtype
elif self.skip_quant:
self.weight_dtype = self._dtype
else:
self.weight_dtype = self._dtype
self.weight_shape = [
self.input_size,
self.output_size,
]
if fd_config.quant_config:
if fd_config.quant_config and not skip_quant:
self.quant_method = fd_config.quant_config.get_quant_method(self)
if fd_config.model_config.is_quantized:
self.weight_key = f"{prefix}.quant_weight"
self.weight_scale_key = f"{prefix}.weight_scale"
self.act_scale_key = f"{prefix}.activation_scale"
def init_weight(self):
"""
Initialize the weights and biases.
"""
if self.skip_quant:
self.weight_dtype = self._dtype
self.weight = self.create_parameter(
shape=self.weight_shape,
dtype=self.weight_dtype,
is_bias=False,
default_initializer=paddle.nn.initializer.Constant(0),
)
set_weight_attrs(
self.weight,
{
"weight_loader": (
self.weight_loader if hasattr(self, "weight_loader") else default_weight_loader(self.fd_config)
)
},
)
else:
self.quant_method: Optional[QuantMethodBase] = UnquantizedLinearMethod()
self.bias = None
if self.with_bias:
@@ -130,19 +157,15 @@ class LinearBase(nn.Layer):
is_bias=True,
)
set_weight_attrs(
self.weight,
{
"weight_loader": (
self.weight_loader if hasattr(self, "weight_loader") else default_weight_loader(self.fd_config)
)
},
)
# smooth quant
self.linear_shift = None
self.linear_smooth = None
if fd_config.model_config.is_quantized:
self.weight_key = f"{prefix}.quant_weight"
self.weight_scale_key = f"{prefix}.weight_scale"
self.act_scale_key = f"{prefix}.activation_scale"
def load_prequant_weight(self, state_dict: dict):
"""
Load the prequantized weight from the state dictionary.
@@ -160,11 +183,7 @@ class LinearBase(nn.Layer):
state_dict (dict): A dictionary containing the weights
"""
weight_tensor = get_tensor(state_dict.pop(self.weight_key))
if self.fd_config.quant_config:
self.quant_method.process_loaded_weights(self, weight_tensor)
else:
self.weight.set_value(weight_tensor)
self.quant_method.process_loaded_weights(self, weight_tensor)
def load_state_dict(self, state_dict: dict):
"""
@@ -199,12 +218,7 @@ class LinearBase(nn.Layer):
Raises:
NotImplementedError: If the weight dtype is not float8 or act dtype is not equal to weight dtype.
"""
if self.fd_config.quant_config:
linear_out = self.quant_method.apply(self, x)
else:
linear_out = paddle.matmul(x, self.weight)
if self.with_bias:
linear_out = paddle.add(linear_out, self.bias)
linear_out = self.quant_method.apply(self, x)
return linear_out
@@ -223,6 +237,8 @@ class ReplicatedLinear(LinearBase):
with_bias: bool = False,
add_bias: bool = False,
skip_quant: bool = False,
weight_dtype: str = "",
weight_key: str = "",
):
"""
Initializes a replicated linear layer.
@@ -245,6 +261,8 @@ class ReplicatedLinear(LinearBase):
with_bias=with_bias,
add_bias=add_bias,
skip_quant=skip_quant,
weight_dtype=weight_dtype,
weight_key=weight_key,
)
self.hidden_size = fd_config.model_config.hidden_size
@@ -252,9 +270,14 @@ class ReplicatedLinear(LinearBase):
self.input_size,
self.output_size,
]
if fd_config.quant_config:
self.quant_method.create_weights(self)
self.init_weight()
assert self.quant_method is not None
self.quant_method.create_weights(
self,
weight_loader=(
self.weight_loader if hasattr(self, "weight_loader") else default_weight_loader(self.fd_config)
),
)
class ColumnParallelLinear(LinearBase):
@@ -306,60 +329,22 @@ class ColumnParallelLinear(LinearBase):
self.input_size,
self.output_size,
]
if fd_config.quant_config:
self.quant_method.create_weights(self)
self.init_weight()
def init_weight(self):
"""
Initialize the weights and biases.
"""
if self.skip_quant:
self.weight_dtype = self._dtype
self.weight = self.create_parameter(
shape=self.weight_shape,
dtype=self.weight_dtype,
is_bias=False,
default_initializer=paddle.nn.initializer.Constant(0),
assert self.quant_method is not None
self.quant_method.create_weights(
self,
split_axis=1,
output_dim=True,
weight_loader=(
self.weight_loader if hasattr(self, "weight_loader") else default_weight_loader(self.fd_config)
),
)
if self.nranks > 0:
# col parallel
_set_var_distributed(self.weight, split_axis=1)
set_weight_attrs(
self.weight,
{
"output_dim": True,
"weight_loader": (
self.weight_loader if hasattr(self, "weight_loader") else default_weight_loader(self.fd_config)
),
},
)
self.bias = None
if self.with_bias:
self.bias = self.create_parameter(
shape=[self.output_size],
dtype=self._dtype,
is_bias=True,
)
if self.nranks > 0:
# col parallel
_set_var_distributed(self.bias, split_axis=1)
set_weight_attrs(
self.weight,
{
"output_dim": True,
"weight_loader": (
self.weight_loader
if hasattr(self, "weight_loader")
else default_weight_loader(self.fd_config)
),
},
)
# smooth quant
self.linear_shift = None
self.linear_smooth = None
set_weight_attrs(self.bias, {"output_dim": True})
class MergedColumnParallelLinear(ColumnParallelLinear):
@@ -429,9 +414,14 @@ class MergedColumnParallelLinear(ColumnParallelLinear):
loaded_weight = get_tensor(loaded_weight)
if loaded_shard_id == "gate":
param[:, : self.output_size // 2] = loaded_weight
param = param[:, : self.output_size // 2]
elif loaded_shard_id == "up":
param[:, self.output_size // 2 :] = loaded_weight
param = param[:, self.output_size // 2 :]
assert param.shape == loaded_weight.shape, (
f" Attempted to load weight ({loaded_weight.shape}) " f"into parameter ({param.shape})"
)
param.copy_(loaded_weight, False)
def load_state_dict(self, state_dict: dict):
"""
@@ -518,16 +508,21 @@ class QKVParallelLinear(ColumnParallelLinear):
loaded_weight = get_tensor(loaded_weight)
if loaded_shard_id == "q":
param[:, : self.num_heads_per_rank * self.head_dim] = loaded_weight
param = param[:, : self.num_heads_per_rank * self.head_dim]
elif loaded_shard_id == "k":
param[
param = param[
:,
self.num_heads_per_rank
* self.head_dim : (self.num_heads_per_rank + self.kv_num_heads_per_rank)
* self.head_dim,
] = loaded_weight
]
elif loaded_shard_id == "v":
param[:, (self.num_heads_per_rank + self.kv_num_heads_per_rank) * self.head_dim :] = loaded_weight
param = param[:, (self.num_heads_per_rank + self.kv_num_heads_per_rank) * self.head_dim :]
assert param.shape == loaded_weight.shape, (
f" Attempted to load weight ({loaded_weight.shape}) " f"into parameter ({param.shape})"
)
param.copy_(loaded_weight, False)
def load_weight(self, state_dict: dict):
"""
@@ -665,62 +660,25 @@ class RowParallelLinear(LinearBase):
]
self._dtype = self._helper.get_default_dtype()
if fd_config.quant_config:
self.quant_method = fd_config.quant_config.get_quant_method(self)
self.quant_method.create_weights(self)
self.reduce_results = reduce_results
self.init_weight()
def init_weight(self):
"""
Initialize the weights and biases.
"""
if self.skip_quant:
self.weight_dtype = self._dtype
self.weight = self.create_parameter(
shape=self.weight_shape,
dtype=self.weight_dtype,
is_bias=False,
default_initializer=paddle.nn.initializer.Constant(0),
assert self.quant_method is not None
self.quant_method.create_weights(
self,
split_axis=0,
output_dim=False,
weight_loader=(
self.weight_loader if hasattr(self, "weight_loader") else default_weight_loader(self.fd_config)
),
)
if self.nranks > 0:
# row parallel
if self.with_bias:
_set_var_distributed(self.bias, split_axis=0)
set_weight_attrs(
self.weight,
self.bias,
{
"output_dim": False,
"weight_loader": (
self.weight_loader if hasattr(self, "weight_loader") else default_weight_loader(self.fd_config)
),
},
)
_set_var_distributed(self.weight, split_axis=0)
self.bias = None
if self.with_bias:
self.bias = self.create_parameter(
shape=[self.hidden_size],
dtype=self._dtype,
is_bias=True,
)
if self.nranks > 0:
set_weight_attrs(
self.bias,
{
"output_dim": False,
"weight_loader": (
self.weight_loader
if hasattr(self, "weight_loader")
else default_weight_loader(self.fd_config)
),
},
)
# smooth quant
self.linear_shift = None
self.linear_smooth = None
self.reduce_results = reduce_results
def forward_cuda(self, x: paddle.Tensor) -> paddle.Tensor:
if self.fd_config.quant_config:

View File

@@ -19,6 +19,9 @@ from abc import abstractmethod
import paddle
from paddle import nn
from fastdeploy.model_executor.models.utils import set_weight_attrs
from fastdeploy.platforms import current_platform
from ..quantization.quant_base import QuantMethodBase
@@ -125,7 +128,7 @@ class MoEMethodBase(QuantMethodBase):
self,
layer: nn.Layer,
x: paddle.Tensor,
gate_out: paddle.Tensor,
gate: nn.Layer,
) -> paddle.Tensor:
"""
Apply the EP prefill method.
@@ -137,7 +140,7 @@ class MoEMethodBase(QuantMethodBase):
self,
layer: nn.Layer,
x: paddle.Tensor,
gate_out: paddle.Tensor,
gate: nn.Layer,
) -> paddle.Tensor:
"""
Apply the EP decoder method.
@@ -149,7 +152,7 @@ class MoEMethodBase(QuantMethodBase):
self,
layer: nn.Layer,
x: paddle.Tensor,
gate_out: paddle.Tensor,
gate: nn.Layer,
) -> paddle.Tensor:
"""
Paddle Cutlass compute Fused MoE.
@@ -160,7 +163,7 @@ class MoEMethodBase(QuantMethodBase):
self,
layer: nn.Layer,
x: paddle.Tensor,
gate_out: paddle.Tensor,
gate: nn.Layer,
) -> paddle.Tensor:
"""
Paddle Cutlass compute Fused MoE.
@@ -168,9 +171,35 @@ class MoEMethodBase(QuantMethodBase):
if layer.ep_size > 1:
if layer.fd_config.parallel_config.moe_phase.phase == "prefill":
self.ep_prefill_runner.clean_low_latency_buffer()
return self.apply_ep_prefill(layer, x, gate_out)
return self.apply_ep_prefill(layer, x, gate)
else:
self.ep_decoder_runner.clean_low_latency_buffer()
return self.apply_ep_decode(layer, x, gate_out)
return self.apply_ep_decode(layer, x, gate)
else:
return self.apply_tp(layer, x, gate_out)
return self.apply_tp(layer, x, gate)
class UnquantizedFusedMoEMethod(MoEMethodBase):
def create_weights(self, layer: nn.Layer, **extra_weight_attrs):
if current_platform.is_cuda():
self.up_gate_proj_weight_shape = [layer.num_experts, layer.hidden_size, layer.moe_intermediate_size * 2]
self.down_proj_weight_shape = [layer.num_experts, layer.moe_intermediate_size, layer.hidden_size]
else:
self.up_gate_proj_weight_shape = [layer.num_experts, layer.moe_intermediate_size * 2, layer.hidden_size]
self.down_proj_weight_shape = [layer.num_experts, layer.hidden_size, layer.moe_intermediate_size]
layer.up_gate_proj_weight = layer.create_parameter(
shape=self.up_gate_proj_weight_shape,
dtype=layer.weight_dtype,
default_initializer=paddle.nn.initializer.Constant(0),
)
layer.down_proj_weight = layer.create_parameter(
shape=self.down_proj_weight_shape,
dtype=layer.weight_dtype,
default_initializer=paddle.nn.initializer.Constant(0),
)
set_weight_attrs(layer.up_gate_proj_weight, extra_weight_attrs)
set_weight_attrs(layer.down_proj_weight, extra_weight_attrs)

View File

@@ -24,7 +24,7 @@ from fastdeploy.distributed.communication import tensor_model_parallel_all_reduc
from fastdeploy.platforms import current_platform
from ..utils import create_and_set_parameter, get_tensor
from .fused_moe_backend_base import MoEMethodBase
from .fused_moe_backend_base import UnquantizedFusedMoEMethod
if current_platform.is_cuda():
from fastdeploy.model_executor.ops.gpu import (
@@ -64,32 +64,19 @@ def get_moe_scores(
return scores, topk_values, topk_idx
class CutlassMoEMethod(MoEMethodBase):
class CutlassMoEMethod(UnquantizedFusedMoEMethod):
"""
Use Cutlass Group Gemm to compute Fused MoE.
This method is the oldest way to compute MoE in Paddle.
"""
def create_weights(self, layer: nn.Layer, state_dict):
"""
Paddle cutlass create weight process.
"""
# bf16
def process_loaded_weights(self, layer: nn.Layer, state_dict):
up_gate_proj_weights, down_proj_weights = layer.extract_moe_ffn_weights(state_dict)
stacked_up_gate_proj_weights = paddle.stack(up_gate_proj_weights, axis=0)
stacked_down_proj_weights = paddle.stack(down_proj_weights, axis=0)
for idx, weight_tensor in enumerate([stacked_up_gate_proj_weights, stacked_down_proj_weights]):
weight_name = self.added_weight_attrs[idx]
setattr(
layer,
weight_name,
layer.create_parameter(
shape=weight_tensor.shape,
dtype=weight_tensor.dtype,
default_initializer=paddle.nn.initializer.Constant(0),
),
)
getattr(layer, weight_name).set_value(weight_tensor)
layer.up_gate_proj_weight.set_value(stacked_up_gate_proj_weights)
layer.down_proj_weight.set_value(stacked_down_proj_weights)
def compute_ffn(
self,
@@ -134,11 +121,12 @@ class CutlassMoEMethod(MoEMethodBase):
self,
layer: nn.Layer,
x: paddle.Tensor,
gate_out: paddle.Tensor,
gate: nn.Layer,
) -> paddle.Tensor:
"""
Apply the EP prefill method.
"""
gate_out = gate(x.cast("float32"))
# 1. Select topk experts and weights
topk_idx, topk_weights = self.ep_prefill_runner.moe_select(layer, gate_out)
# 2. EP Dispatch
@@ -206,11 +194,12 @@ class CutlassMoEMethod(MoEMethodBase):
self,
layer: nn.Layer,
x: paddle.Tensor,
gate_out: paddle.Tensor,
gate: nn.Layer,
) -> paddle.Tensor:
"""
Apply the EP decoder method.
"""
gate_out = gate(x.cast("float32"))
# 1. Select topk experts and weights
topk_idx, topk_weights = self.ep_decoder_runner.moe_select(layer, gate_out)
expertwise_scale = getattr(layer, "up_gate_proj_in_scale_all_experts", None)
@@ -242,11 +231,12 @@ class CutlassMoEMethod(MoEMethodBase):
self,
layer: nn.Layer,
x: paddle.Tensor,
gate_out: paddle.Tensor,
gate: nn.Layer,
) -> paddle.Tensor:
"""
Paddle Cutlass compute Fused MoE.
"""
gate_out = gate(x.cast("float32"))
if layer.topk_method == "noaux_tc":
gate_out, _, _ = get_moe_scores(
gate_out,

View File

@@ -126,11 +126,12 @@ class DeepGemmFusedMoeMethod(MoEMethodBase):
self,
layer: nn.Layer,
x: paddle.Tensor,
gate_out: paddle.Tensor,
gate: nn.Layer,
) -> paddle.Tensor:
"""
Apply the EP prefill method.
"""
gate_out = gate(x.cast("float32"))
# 1. Select topk experts and weights
topk_idx, topk_weights = self.ep_prefill_runner.moe_select(layer, gate_out)
# 2. Dynamic compute blockwise quantization scales
@@ -233,11 +234,12 @@ class DeepGemmFusedMoeMethod(MoEMethodBase):
self,
layer: nn.Layer,
x: paddle.Tensor,
gate_out: paddle.Tensor,
gate: nn.Layer,
) -> paddle.Tensor:
"""
Apply the EP decoder method.
"""
gate_out = gate(x.cast("float32"))
# 1. Select topk experts and weights
topk_idx, topk_weights = self.ep_decoder_runner.moe_select(layer, gate_out)
# 2. EP Dispatch
@@ -303,13 +305,13 @@ class DeepGemmFusedMoeMethod(MoEMethodBase):
self,
layer: nn.Layer,
x: paddle.Tensor,
gate_out: paddle.Tensor,
gate: nn.Layer,
) -> paddle.Tensor:
"""
Paddle Use DeepGemm compute Fused MoE.
below is TP compute method.
"""
gate_out = gate(x.cast("float32"))
topk_ids, topk_weights = fastdeploy.model_executor.ops.gpu.moe_topk_select(
gate_out,
layer.gate_correction_bias,

View File

@@ -219,11 +219,12 @@ class MarlinWeightOnlyMoEMethod(QuantMethodBase):
self,
layer: nn.Layer,
x: paddle.Tensor,
gate_out: paddle.Tensor,
gate: nn.Layer,
) -> paddle.Tensor:
"""
Marlin compute Fused MoE.
"""
gate_out = gate(x.cast("float32"))
token_num = x.shape[0]
top_k = layer.top_k
top_k = layer.top_k

View File

@@ -115,11 +115,12 @@ class TritonWeightOnlyMoEMethod(QuantMethodBase):
self,
layer: nn.Layer,
x: paddle.Tensor,
gate_out: paddle.Tensor,
gate: nn.Layer,
) -> paddle.Tensor:
"""
Triton compute Fused MoE.
"""
gate_out = gate(x.cast("float32"))
token_num = x.shape[0]
top_k = layer.top_k
num_local_experts = layer.num_local_experts
@@ -336,12 +337,12 @@ class TensorWiseFP8MoEMethod(QuantMethodBase):
self,
layer: nn.Layer,
x: paddle.Tensor,
gate_out: paddle.Tensor,
gate: nn.Layer,
) -> paddle.Tensor:
"""
Triton compute Fused MoE.
"""
gate_out = gate(x.cast("float32"))
token_num = x.shape[0]
top_k = layer.top_k
num_local_experts = layer.num_local_experts
@@ -576,12 +577,12 @@ class BlockWiseFP8MoEMethod(QuantMethodBase):
self,
layer: nn.Layer,
x: paddle.Tensor,
gate_out: paddle.Tensor,
gate: nn.Layer,
) -> paddle.Tensor:
"""
Triton compute Fused MoE.
"""
gate_out = gate(x.cast("float32"))
token_num = x.shape[0]
top_k = layer.top_k
num_local_experts = layer.num_local_experts

View File

@@ -171,12 +171,12 @@ class CutlassWint2FusedMoeMethod(Wint2MoeMethod):
self,
layer: nn.Layer,
x: paddle.Tensor,
gate_out: paddle.Tensor,
gate: nn.Layer,
) -> paddle.Tensor:
"""
Use Wint2 Triton Fusedmoe compute Fused MoE.
"""
gate_out = gate(x.cast("float32"))
from fastdeploy.model_executor.ops.gpu import moe_expert_dispatch
(
@@ -242,12 +242,12 @@ class TritonWint2FusedMoeMethod(CutlassWint2FusedMoeMethod):
self,
layer: nn.Layer,
x: paddle.Tensor,
gate_out: paddle.Tensor,
gate: nn.Layer,
) -> paddle.Tensor:
"""
Use Wint2 Triton Fusedmoe compute Fused MoE.
"""
gate_out = gate(x.cast("float32"))
from fastdeploy.model_executor.ops.triton_ops import moe_wint2_ffn_kernel
topk_ids, topk_weights = fastdeploy.model_executor.ops.gpu.moe_topk_select(

View File

@@ -19,47 +19,36 @@ from typing import Dict
import paddle
from paddle import nn
from fastdeploy.model_executor.layers.moe.fused_moe_backend_base import (
UnquantizedFusedMoEMethod,
)
from fastdeploy.model_executor.layers.quantization.quant_base import QuantMethodBase
from fastdeploy.model_executor.layers.quantization.weight_only import WeightOnlyConfig
from fastdeploy.model_executor.ops.xpu import weight_quantize_xpu
from .fused_moe_backend_base import MoEMethodBase
class XPUMoEMethod(MoEMethodBase):
class XPUMoEMethod(UnquantizedFusedMoEMethod):
"""
XPU MOE
"""
def create_weights(self, layer: nn.Layer, state_dict):
"""
Paddle cutlass create weight process.
"""
# bf16
def process_loaded_weights(self, layer: nn.Layer, state_dict):
up_gate_proj_weights, down_proj_weights = layer.extract_moe_ffn_weights(state_dict)
for weights in [up_gate_proj_weights, down_proj_weights]:
for idx, weight in enumerate(weights):
weights[idx] = weight.transpose([1, 0])
stacked_up_gate_proj_weights = paddle.stack(up_gate_proj_weights, axis=0)
stacked_down_proj_weights = paddle.stack(down_proj_weights, axis=0)
for idx, weight_tensor in enumerate([stacked_up_gate_proj_weights, stacked_down_proj_weights]):
weight_name = self.added_weight_attrs[idx]
setattr(
layer,
weight_name,
layer.create_parameter(
shape=weight_tensor.shape,
dtype=weight_tensor.dtype,
default_initializer=paddle.nn.initializer.Constant(0),
),
)
getattr(layer, weight_name).set_value(weight_tensor)
layer.up_gate_proj_weight.set_value(stacked_up_gate_proj_weights)
layer.down_proj_weight.set_value(stacked_down_proj_weights)
def apply_tp(
self,
layer: nn.Layer,
x: paddle.Tensor,
gate_out: paddle.Tensor,
gate: nn.Layer,
) -> paddle.Tensor:
"""
Paddle Cutlass compute Fused MoE.
@@ -68,7 +57,7 @@ class XPUMoEMethod(MoEMethodBase):
fused_moe_out = xpu_moe_layer(
x,
layer.gate_weight.transpose([1, 0]),
gate.weight.transpose([1, 0]),
layer.gate_correction_bias,
layer.up_gate_proj_weight,
layer.down_proj_weight,
@@ -94,7 +83,7 @@ class XPUMoEMethod(MoEMethodBase):
self,
layer: nn.Layer,
x: paddle.Tensor,
gate_out: paddle.Tensor,
gate: nn.Layer,
) -> paddle.Tensor:
"""
Apply the EP prefill method.
@@ -105,7 +94,7 @@ class XPUMoEMethod(MoEMethodBase):
self,
layer: nn.Layer,
x: paddle.Tensor,
gate_out: paddle.Tensor,
gate: nn.Layer,
) -> paddle.Tensor:
"""
Apply the EP decoder method.
@@ -187,7 +176,7 @@ class XPUWeightOnlyMoEMethod(QuantMethodBase):
self,
layer: nn.Layer,
x: paddle.Tensor,
gate_out: paddle.Tensor,
gate: nn.Layer,
) -> paddle.Tensor:
"""
XPU compute Fused MoE.
@@ -196,7 +185,7 @@ class XPUWeightOnlyMoEMethod(QuantMethodBase):
fused_moe_out = xpu_moe_layer(
x,
layer.gate_weight.transpose([1, 0]),
gate.weight.transpose([1, 0]),
layer.gate_correction_bias,
layer.up_gate_proj_weight,
layer.down_proj_weight,

View File

@@ -14,6 +14,8 @@
# limitations under the License.
"""
from typing import Optional
import paddle
from paddle import nn
from paddleformers.utils.log import logger
@@ -77,7 +79,7 @@ class FusedMoE(nn.Layer):
self.fd_config = fd_config
self.layer_idx = layer_idx
self.reduce_results = reduce_results
self.tp_rank = fd_config.parallel_config.tensor_parallel_rank
self.tp_size = fd_config.parallel_config.tensor_parallel_size
self.ep_size = fd_config.parallel_config.expert_parallel_size
self.ep_rank = fd_config.parallel_config.expert_parallel_rank
@@ -109,14 +111,19 @@ class FusedMoE(nn.Layer):
self.n_group = n_group
self.routed_scaling_factor = routed_scaling_factor
self._dtype = self._helper.get_default_dtype()
self.weight_dtype = self._dtype
moe_quant_config = fd_config.quant_config
self.moe_quant_config = moe_quant_config
self.moe_quant_type = None
if moe_quant_config:
self.quant_method = moe_quant_config.get_quant_method(self)
self.moe_quant_type = moe_quant_config.name()
else:
# now, no quant method(w_fp16 a_fp16) can't get from quant_config, we will optimize it in future
# w_fp16 a_fp16
self.quant_method = get_moe_method()
self.quant_method.create_weights(self, weight_loader=self.weight_loader)
self.redundant_table_manger = None
if self.ep_size > 1:
@@ -140,21 +147,121 @@ class FusedMoE(nn.Layer):
tp_size={self.tp_size}."
)
def weight_loader(self, param, loaded_weight, expert_id, shard_id: Optional[str] = None):
from fastdeploy.platforms import current_platform
if shard_id is None:
# 1.gate up fused in disk
return
# 2.gate up splited in disk
assert shard_id in ["gate", "down", "up"]
expert_param = param[expert_id]
if current_platform.is_cuda():
SHARD_ID_TO_SHARDED_DIM = {"gate": 1, "down": 0, "up": 1}
else:
SHARD_ID_TO_SHARDED_DIM = {"gate": 0, "down": 1, "up": 0}
self._load_expert_weight(
expert_param=expert_param,
shard_dim=SHARD_ID_TO_SHARDED_DIM[shard_id],
loaded_weight=loaded_weight,
shard_id=shard_id,
)
def _load_gate_up_weight(self, expert_param, shard_dim, loaded_weight, shard_id):
tensor_size = expert_param.shape[shard_dim] // 2
if shard_id == "gate":
expert_param = expert_param[..., :tensor_size] if shard_dim else expert_param[:tensor_size, ...]
elif shard_id == "up":
expert_param = expert_param[..., tensor_size:] if shard_dim else expert_param[tensor_size:, ...]
if self.tp_size > 1:
size = loaded_weight.get_shape()[-1]
block_size = size // self.tp_size
shard_offset = self.tp_rank * block_size
shard_size = (self.tp_rank + 1) * block_size
loaded_weight = loaded_weight[..., shard_offset:shard_size]
loaded_weight = get_tensor(loaded_weight)
# To ensure compatibility across backends, apply an extra transpose for GCU and XPU
if expert_param.shape != loaded_weight.shape:
loaded_weight = loaded_weight.transpose([1, 0])
assert expert_param.shape == loaded_weight.shape, (
f"Attempted to load weight ({loaded_weight.shape}) " f"into parameter ({expert_param.shape})"
)
expert_param.copy_(loaded_weight, False)
def _load_down_weight(self, expert_param, shard_dim, loaded_weight, shard_id):
if self.tp_size > 1:
size = loaded_weight.get_shape()[shard_dim]
block_size = size // self.tp_size
shard_offset = self.tp_rank * block_size
shard_size = (self.tp_rank + 1) * block_size
loaded_weight = loaded_weight[shard_offset:shard_size, ...]
loaded_weight = get_tensor(loaded_weight)
# To ensure compatibility across backends, apply an extra transpose for GCU and XPU
if expert_param.shape != loaded_weight.shape:
loaded_weight = loaded_weight.transpose([1, 0])
assert expert_param.shape == loaded_weight.shape, (
f"Attempted to load weight ({loaded_weight.shape}) " f"into parameter ({expert_param.shape})"
)
expert_param.copy_(loaded_weight, False)
def _load_expert_weight(
self,
expert_param,
shard_dim,
loaded_weight,
shard_id,
):
if shard_id == "down":
self._load_down_weight(expert_param, shard_dim, loaded_weight, shard_id)
elif shard_id in ["gate", "up"]:
self._load_gate_up_weight(expert_param, shard_dim, loaded_weight, shard_id)
@classmethod
def make_expert_params_mapping(
cls,
ckpt_gate_proj_name: str,
ckpt_down_proj_name: str,
ckpt_up_proj_name: str,
param_gate_up_proj_name: str,
param_down_proj_name: str,
num_experts: int,
ckpt_expert_key_name: str = "experts",
ckpt_gate_up_proj_name: Optional[str] = None,
) -> list[tuple[str, str, int, str]]:
param_name_maping = [
("gate", ckpt_gate_proj_name),
("down", ckpt_down_proj_name),
("up", ckpt_up_proj_name),
]
if ckpt_gate_up_proj_name:
param_name_maping.append((None, ckpt_gate_up_proj_name))
return [
# (param_name, weight_name, expert_id, shard_id)
(
(
param_gate_up_proj_name
if weight_name in [ckpt_gate_proj_name, ckpt_up_proj_name]
else param_down_proj_name
),
f"{ckpt_expert_key_name}.{expert_id}.{weight_name}.",
expert_id,
shard_id,
)
for expert_id in range(num_experts)
for shard_id, weight_name in param_name_maping
]
def init_moe_weights(self):
"""
Initialize the weight shapes and parameters for the MoE layer.
Combines weight shape initialization and parameter creation into a single function.
"""
# Initialize weight shapes
self._dtype = self._helper.get_default_dtype()
self.weight_dtype = self._dtype
gate_weight_shape = [self.hidden_size, self.num_experts]
gate_correction_bias_shape = [1, self.num_experts]
self.gate_weight = self.create_parameter(
shape=gate_weight_shape,
dtype="float32",
)
if self.fd_config.model_config.moe_use_aux_free:
self.gate_correction_bias = self.create_parameter(
shape=gate_correction_bias_shape,
@@ -374,26 +481,19 @@ class FusedMoE(nn.Layer):
)
self.gate_correction_bias.set_value(gate_correction_bias_tensor)
gate_weight_key = self.weight_key_map.get("gate_weight_key", None)
assert gate_weight_key is not None, "gate_weight_key should not be None, please check model checkpoints"
gate_weight_tensor = get_tensor(state_dict.pop(gate_weight_key))
self.gate_weight = self.create_parameter(
shape=gate_weight_tensor.shape,
dtype="float32",
)
self.gate_weight.set_value(gate_weight_tensor.astype("float32"))
if self.fd_config.model_config.is_quantized:
if getattr(self.fd_config.quant_config, "is_permuted", True):
self.quant_method.process_prequanted_weights(self, state_dict)
else:
self.quant_method.create_weights(self, state_dict)
else:
self.quant_method.create_weights(self, state_dict)
if self.moe_quant_config:
self.quant_method.create_weights(self, state_dict)
else:
# w_fp16 a_fp16
self.quant_method.process_loaded_weights(self, state_dict)
def forward(self, x: paddle.Tensor):
def forward(self, x: paddle.Tensor, gate: nn.Layer):
"""
Defines the forward computation of the moe layer.
@@ -404,6 +504,5 @@ class FusedMoE(nn.Layer):
Tensor: Output tensor.s
"""
gate_out = paddle.matmul(x.cast("float32"), self.gate_weight)
out = self.quant_method.apply(self, x, gate_out)
out = self.quant_method.apply(self, x, gate)
return out

View File

@@ -81,8 +81,16 @@ class BlockWiseFP8LinearMethod(QuantMethodBase):
super().__init__()
self.quant_config = quant_config
def create_weights(self, layer):
def create_weights(self, layer, **extra_weight_attrs):
layer.weight_shape.reverse()
layer.weight = layer.create_parameter(
shape=layer.weight_shape,
dtype=layer.weight_dtype,
is_bias=False,
default_initializer=paddle.nn.initializer.Constant(0),
)
layer.weight_scale = layer.create_parameter(
shape=[
(layer.output_size + self.quant_config.weight_block_size[0] - 1)

View File

@@ -16,6 +16,8 @@
from typing import Optional
import paddle
from fastdeploy.model_executor.layers.moe import FusedMoE
from ..utils import get_tensor
@@ -79,11 +81,14 @@ class TensorWiseFP8LinearMethod(QuantMethodBase):
self.quant_round_type = 1
self.weight_dtype = "float8_e4m3fn"
def create_weights(self, layer):
"""
Nothing to do!
"""
pass
def create_weights(self, layer, **extra_weight_attrs):
layer.weight = layer.create_parameter(
shape=layer.weight_shape,
dtype=layer.weight_dtype,
is_bias=False,
default_initializer=paddle.nn.initializer.Constant(0),
)
def process_prequanted_weights(self, layer, state_dict) -> None:
"""

View File

@@ -63,11 +63,17 @@ class W4AFP8LinearMethod(QuantMethodBase):
super().__init__()
self.quant_config = quant_config
def create_weights(self, layer):
def create_weights(self, layer, **extra_weight_attrs):
layer.weight_shape.reverse()
layer.weight_shape[0] //= 2
layer.weight_dtype = "int8"
pass
layer.weight = layer.create_parameter(
shape=layer.weight_shape,
dtype=layer.weight_dtype,
is_bias=False,
default_initializer=paddle.nn.initializer.Constant(0),
)
def process_loaded_weights(self, layer, weights) -> None:
(

View File

@@ -74,7 +74,7 @@ class W8A8LinearMethod(QuantMethodBase):
self.quant_config = quant_config
self.smooth_quant_method = SmoothQuantLinearMethod(quant_config)
def create_weights(self, layer):
def create_weights(self, layer, **extra_weight_attrs):
layer.weight_shape.reverse()
layer.weight_dtype = "int8"
if self.quant_config.use_smooth_quant:
@@ -85,7 +85,12 @@ class W8A8LinearMethod(QuantMethodBase):
if weight_scale is None or in_scale is None:
self.skip_quant = True
return
layer.wieght = layer.create_parameter(
shape=layer.weight_shape,
dtype=layer.weight_dtype,
is_bias=False,
default_initializer=paddle.nn.initializer.Constant(0),
)
max_range = 127.0
linear_out_scale = paddle.to_tensor(weight_scale / (max_range * max_range * in_scale)).astype("float32")
layer.linear_out_scale = layer.create_parameter(
@@ -136,7 +141,7 @@ class SmoothQuantLinearMethod(QuantMethodBase):
super().__init__()
self.quant_config = quant_config
def create_weights(self, layer):
def create_weights(self, layer, **extra_weight_attrs):
linear_shift_shape = [layer.output_size]
linear_smooth_shape = [layer.output_size]
layer.linear_shift = self.create_parameter(

View File

@@ -168,7 +168,7 @@ class WeightOnlyLinearMethod(QuantMethodBase):
super().__init__()
self.quant_config = quant_config
def create_weights(self, layer):
def create_weights(self, layer, **extra_weight_attrs):
# The scale shape should be equal to the output dim of weight using Per-Channel Quantization.
weight_scale_shape = [layer.weight_shape[1]]
@@ -177,6 +177,14 @@ class WeightOnlyLinearMethod(QuantMethodBase):
if self.quant_config.name() == "wint4":
layer.weight_shape[0] //= 2
layer.weight_dtype = "int8"
layer.weight = layer.create_parameter(
shape=layer.weight_shape,
dtype=layer.weight_dtype,
is_bias=False,
default_initializer=paddle.nn.initializer.Constant(0),
)
layer.weight_scale = layer.create_parameter(
shape=weight_scale_shape,
dtype=layer._dtype,

View File

@@ -69,12 +69,18 @@ class WFP8AFP8LinearMethod(QuantMethodBase):
super().__init__()
self.quant_config = quant_config
def create_weights(self, layer):
def create_weights(self, layer, **extra_weight_attrs):
""" """
layer.weight_shape.reverse()
layer.weight_dtype = "float8_e4m3fn"
# TODO(YuanRisheng): set weight logic should be moved to process_loaded_weights func
self.skip_quant = False
layer.create_parameter(
shape=layer.weight_shape,
dtype=layer.weight_dtype,
is_bias=False,
default_initializer=paddle.nn.initializer.Constant(0),
)
layer.weight_scale = layer.create_parameter(
shape=[1],
dtype="float32",

View File

@@ -17,14 +17,16 @@
from fastdeploy.config import LoadChoices, LoadConfig
from fastdeploy.model_executor.model_loader.base_loader import BaseModelLoader
from fastdeploy.model_executor.model_loader.default_loader import DefaultModelLoader
from fastdeploy.model_executor.model_loader.new_loader import NewModelLoader
from fastdeploy.model_executor.model_loader.default_loader_v1 import (
DefaultModelLoaderV1,
)
def get_model_loader(load_config: LoadConfig) -> BaseModelLoader:
"""get_model_loader"""
if load_config.load_choices == LoadChoices.NEW_LOADER:
return NewModelLoader(load_config)
if load_config.load_choices == LoadChoices.DEFAULT_V1:
return DefaultModelLoaderV1(load_config)
return DefaultModelLoader(load_config)

View File

@@ -14,6 +14,8 @@
# limitations under the License.
"""
import contextlib
import paddle
from paddle import nn
from paddleformers.utils.log import logger
@@ -62,15 +64,16 @@ class DefaultModelLoader(BaseModelLoader):
self.clean_memory_fragments(state_dict)
def load_model(self, fd_config: FDConfig) -> nn.Layer:
context = paddle.LazyGuard()
architectures = fd_config.model_config.architectures[0]
logger.info(f"Starting to load model {architectures}")
if fd_config.load_config.dynamic_load_weight:
# register rl model
import fastdeploy.rl # noqa
architectures = architectures + "RL"
context = paddle.LazyGuard()
else:
context = contextlib.nullcontext()
with context:
model_cls = ModelRegistry.get_class(architectures)

View File

@@ -14,6 +14,8 @@
# limitations under the License.
"""
import contextlib
import paddle
from paddle import nn
from paddleformers.utils.log import logger
@@ -29,7 +31,7 @@ from fastdeploy.model_executor.models.model_base import ModelRegistry
from fastdeploy.platforms import current_platform
class NewModelLoader(BaseModelLoader):
class DefaultModelLoaderV1(BaseModelLoader):
"""ModelLoader that can load registered models"""
def __init__(self, load_config: LoadConfig):
@@ -54,15 +56,19 @@ class NewModelLoader(BaseModelLoader):
def load_model(self, fd_config: FDConfig) -> nn.Layer:
architectures = fd_config.model_config.architectures[0]
logger.info(f"Starting to load model {architectures}")
if fd_config.load_config.dynamic_load_weight:
# register rl model
import fastdeploy.rl # noqa
architectures = architectures + "RL"
context = paddle.LazyGuard()
model_cls = ModelRegistry.get_class(architectures)
model = model_cls(fd_config)
else:
context = contextlib.nullcontext()
with context:
model_cls = ModelRegistry.get_class(architectures)
model = model_cls(fd_config)
model.eval()

View File

@@ -117,13 +117,12 @@ class DeepSeekV3MoE(nn.Layer):
self.tp_size = fd_config.parallel_config.tensor_parallel_size
weight_key_map = {
"gate_weight_key": f"{prefix}.gate.weight",
"gate_correction_bias_key": f"{prefix}.gate.e_score_correction_bias",
"up_gate_proj_expert_weight_key": f"{prefix}.experts.{{}}.up_gate_proj.weight",
"down_proj_expert_weight_key": f"{prefix}.experts.{{}}.down_proj.weight",
}
self.fused_moe = FusedMoE(
self.experts = FusedMoE(
fd_config=fd_config,
reduce_results=False,
moe_intermediate_size=fd_config.model_config.moe_intermediate_size,
@@ -137,6 +136,16 @@ class DeepSeekV3MoE(nn.Layer):
weight_key_map=weight_key_map,
)
self.gate = ReplicatedLinear(
fd_config=fd_config,
prefix=f"{prefix}.gate",
input_size=fd_config.model_config.hidden_size,
output_size=fd_config.model_config.n_routed_experts,
with_bias=False,
skip_quant=True,
weight_dtype="float32",
)
self.num_shared_experts = fd_config.model_config.n_shared_experts
shared_experts_intermediate_size = self.num_shared_experts * fd_config.model_config.moe_intermediate_size
@@ -149,13 +158,14 @@ class DeepSeekV3MoE(nn.Layer):
def load_state_dict(self, state_dict):
""" """
self.fused_moe.load_state_dict(state_dict)
self.gate.load_state_dict(state_dict)
self.experts.load_state_dict(state_dict)
self.shared_experts.load_state_dict(state_dict)
def forward(self, hidden_states: paddle.Tensor):
""" """
shared_experts_out = self.shared_experts(hidden_states)
moe_out = self.fused_moe(hidden_states)
moe_out = self.experts(hidden_states, self.gate)
moe_out = moe_out + shared_experts_out
# We do to TP all reduce after the sum of experts.
if self.tp_size > 1:

View File

@@ -37,6 +37,7 @@ from fastdeploy.model_executor.layers.embeddings import VocabParallelEmbedding
from fastdeploy.model_executor.layers.linear import (
MergedColumnParallelLinear,
QKVParallelLinear,
ReplicatedLinear,
RowParallelLinear,
)
from fastdeploy.model_executor.layers.lm_head import ParallelLMHead
@@ -147,7 +148,7 @@ class Ernie4_5_MoE(nn.Layer):
"down_proj_expert_weight_key": f"{prefix}.experts.{{}}.down_proj.weight",
}
self.fused_moe = FusedMoE(
self.experts = FusedMoE(
fd_config=fd_config,
moe_intermediate_size=fd_config.model_config.moe_intermediate_size,
num_experts=fd_config.model_config.moe_num_experts,
@@ -156,6 +157,16 @@ class Ernie4_5_MoE(nn.Layer):
weight_key_map=weight_key_map,
)
self.gate = ReplicatedLinear(
fd_config=fd_config,
prefix=f"{prefix}.gate",
input_size=fd_config.model_config.hidden_size,
output_size=fd_config.model_config.moe_num_experts,
with_bias=False,
skip_quant=True,
weight_dtype="float32",
)
self.num_shared_experts = fd_config.model_config.moe_num_shared_experts
if self.num_shared_experts > 0:
shared_experts_hidden_dim = self.num_shared_experts * fd_config.model_config.moe_intermediate_size
@@ -166,12 +177,13 @@ class Ernie4_5_MoE(nn.Layer):
)
def load_state_dict(self, state_dict):
self.fused_moe.load_state_dict(state_dict)
self.gate.load_state_dict(state_dict)
self.experts.load_state_dict(state_dict)
if self.num_shared_experts > 0:
self.shared_experts.load_state_dict(state_dict)
def forward(self, hidden_states: paddle.Tensor):
out = self.fused_moe(hidden_states)
out = self.experts(hidden_states, self.gate)
if self.num_shared_experts > 0:
s_x = self.shared_experts(hidden_states)
out = out + s_x
@@ -435,7 +447,7 @@ class Ernie4_5_MoeForCausalLM(ModelForCasualLM):
self.fd_config.model_config.moe_layer_start_index,
self.fd_config.model_config.num_hidden_layers,
):
self.ernie.layers[i].mlp.fused_moe(fake_hidden_states)
self.ernie.layers[i].mlp.expert(fake_hidden_states)
def forward(
self,

View File

@@ -33,6 +33,7 @@ from fastdeploy.model_executor.graph_optimization.decorator import (
support_graph_optimization,
)
from fastdeploy.model_executor.layers.embeddings import VocabParallelEmbedding
from fastdeploy.model_executor.layers.linear import ReplicatedLinear
from fastdeploy.model_executor.layers.lm_head import ParallelLMHead
from fastdeploy.model_executor.layers.moe.moe import FusedMoE
from fastdeploy.model_executor.layers.normalization import RMSNorm
@@ -73,6 +74,93 @@ class VLMoEMeta:
fake_hidden_states: Optional[paddle.Tensor] = None
class Ernie4_5_VLMoeBlock(nn.Layer):
def __init__(self, fd_config: FDConfig, layer_id: int, prefix: str, moe_tag: str, expert_id_offset: int) -> None:
super().__init__()
moe_quant_type = ""
if hasattr(fd_config, "quant_config") and fd_config.quant_config is not None:
moe_quant_type = getattr(fd_config.quant_config, "name", lambda: "")()
if moe_quant_type == "tensor_wise_fp8" or (
moe_quant_type == "block_wise_fp8" and fd_config.model_config.is_quantized
):
weight_key_map = {
"gate_correction_bias_key": f"{prefix}.moe_statics.e_score_correction_bias",
"up_gate_proj_expert_weight_key": f"{prefix}.experts.{{}}.up_gate_proj.quant_weight",
"down_proj_expert_weight_key": f"{prefix}.experts.{{}}.down_proj.quant_weight",
"up_gate_proj_expert_weight_scale_key": f"{prefix}.experts.{{}}.up_gate_proj.weight_scale",
"down_proj_expert_weight_scale_key": f"{prefix}.experts.{{}}.down_proj.weight_scale",
"up_gate_proj_expert_in_scale_key": f"{prefix}.experts.{{}}.up_gate_proj.activation_scale",
"down_proj_expert_in_scale_key": f"{prefix}.experts.{{}}.down_proj.activation_scale",
}
else:
# wint4/wint8/bfloat16
weight_key_map = {
"gate_correction_bias_key": f"{prefix}.moe_statics.e_score_correction_bias",
"up_gate_proj_expert_weight_key": f"{prefix}.experts.{{}}.up_gate_proj.weight",
"down_proj_expert_weight_key": f"{prefix}.experts.{{}}.down_proj.weight",
}
moe_intermediate_size = (
fd_config.model_config.moe_intermediate_size[0]
if moe_tag == "Text"
else fd_config.model_config.moe_intermediate_size[1]
)
num_experts = (
fd_config.model_config.moe_num_experts[0]
if moe_tag == "Text"
else fd_config.model_config.moe_num_experts[1]
)
self.experts = FusedMoE(
fd_config=fd_config,
reduce_results=False,
moe_intermediate_size=moe_intermediate_size,
num_experts=num_experts,
expert_id_offset=expert_id_offset,
top_k=fd_config.model_config.moe_k,
layer_idx=layer_id,
moe_tag=moe_tag,
weight_key_map=weight_key_map,
)
self.gate = ReplicatedLinear(
fd_config=fd_config,
prefix=f"{prefix}.gate",
input_size=fd_config.model_config.hidden_size,
output_size=num_experts,
with_bias=False,
skip_quant=True,
weight_dtype="float32",
weight_key="weight" if moe_tag == "Text" else "weight_1",
)
if moe_tag == "Text":
self.experts.extract_gate_correction_bias = self.extract_gate_correction_bias_text
elif moe_tag == "Image":
self.experts.extract_gate_correction_bias = self.extract_gate_correction_bias_image
def forward(self, hidden_states: paddle.Tensor):
out = self.experts(hidden_states, self.gate)
return out
def extract_gate_correction_bias_text(self, gate_correction_bias_key, state_dict):
"""
extract_gate_correction_bias function.
"""
gate_correction_bias_tensor = get_tensor(state_dict[gate_correction_bias_key]).astype("float32")
return gate_correction_bias_tensor[0].unsqueeze(0)
def extract_gate_correction_bias_image(self, gate_correction_bias_key, state_dict):
"""
extract_gate_correction_bias function.
"""
gate_correction_bias_tensor = get_tensor(state_dict[gate_correction_bias_key]).astype("float32")
return gate_correction_bias_tensor[1].unsqueeze(0)
def load_state_dict(self, state_dict):
self.experts.load_state_dict(state_dict)
self.gate.load_state_dict(state_dict)
class Ernie4_5_VLMoE(nn.Layer):
def __init__(self, fd_config: FDConfig, layer_id: int, prefix: str) -> None:
super().__init__()
@@ -99,43 +187,10 @@ class Ernie4_5_VLMoE(nn.Layer):
assert text_moe_layer_start_index <= text_moe_layer_end_index
moe_quant_type = ""
if hasattr(fd_config, "quant_config") and fd_config.quant_config is not None:
moe_quant_type = getattr(fd_config.quant_config, "name", lambda: "")()
if layer_id >= text_moe_layer_start_index and layer_id <= text_moe_layer_end_index:
if moe_quant_type == "tensor_wise_fp8" or (
moe_quant_type == "block_wise_fp8" and fd_config.model_config.is_quantized
):
weight_key_map = {
"gate_weight_key": f"{prefix}.gate.weight",
"gate_correction_bias_key": f"{prefix}.moe_statics.e_score_correction_bias",
"up_gate_proj_expert_weight_key": f"{prefix}.experts.{{}}.up_gate_proj.quant_weight",
"down_proj_expert_weight_key": f"{prefix}.experts.{{}}.down_proj.quant_weight",
"up_gate_proj_expert_weight_scale_key": f"{prefix}.experts.{{}}.up_gate_proj.weight_scale",
"down_proj_expert_weight_scale_key": f"{prefix}.experts.{{}}.down_proj.weight_scale",
"up_gate_proj_expert_in_scale_key": f"{prefix}.experts.{{}}.up_gate_proj.activation_scale",
"down_proj_expert_in_scale_key": f"{prefix}.experts.{{}}.down_proj.activation_scale",
}
else:
weight_key_map = {
"gate_weight_key": f"{prefix}.gate.weight",
"gate_correction_bias_key": f"{prefix}.moe_statics.e_score_correction_bias",
"up_gate_proj_expert_weight_key": f"{prefix}.experts.{{}}.up_gate_proj.weight",
"down_proj_expert_weight_key": f"{prefix}.experts.{{}}.down_proj.weight",
}
self.text_fused_moe = FusedMoE(
fd_config=fd_config,
reduce_results=False,
moe_intermediate_size=fd_config.model_config.moe_intermediate_size[0],
num_experts=fd_config.model_config.moe_num_experts[0],
expert_id_offset=0,
top_k=fd_config.model_config.moe_k,
layer_idx=layer_id,
moe_tag="Text",
weight_key_map=weight_key_map,
self.text_fused_moe = Ernie4_5_VLMoeBlock(
fd_config=fd_config, layer_id=layer_id, prefix=f"{prefix}", moe_tag="Text", expert_id_offset=0
)
self.text_fused_moe.extract_gate_correction_bias = self.extract_gate_correction_bias_text
else:
self.text_fused_moe = Ernie4_5_VLMLP(
fd_config=fd_config,
@@ -146,38 +201,13 @@ class Ernie4_5_VLMoE(nn.Layer):
assert image_moe_layer_start_index <= image_moe_layer_end_index
if layer_id >= image_moe_layer_start_index and layer_id <= image_moe_layer_end_index:
if moe_quant_type == "tensor_wise_fp8" or (
moe_quant_type == "block_wise_fp8" and fd_config.model_config.is_quantized
):
weight_key_map = {
"gate_weight_key": f"{prefix}.gate.weight_1",
"gate_correction_bias_key": f"{prefix}.moe_statics.e_score_correction_bias",
"up_gate_proj_expert_weight_key": f"{prefix}.experts.{{}}.up_gate_proj.quant_weight",
"down_proj_expert_weight_key": f"{prefix}.experts.{{}}.down_proj.quant_weight",
"up_gate_proj_expert_weight_scale_key": f"{prefix}.experts.{{}}.up_gate_proj.weight_scale",
"down_proj_expert_weight_scale_key": f"{prefix}.experts.{{}}.down_proj.weight_scale",
"up_gate_proj_expert_in_scale_key": f"{prefix}.experts.{{}}.up_gate_proj.activation_scale",
"down_proj_expert_in_scale_key": f"{prefix}.experts.{{}}.down_proj.activation_scale",
}
else:
weight_key_map = {
"gate_weight_key": f"{prefix}.gate.weight_1",
"gate_correction_bias_key": f"{prefix}.moe_statics.e_score_correction_bias",
"up_gate_proj_expert_weight_key": f"{prefix}.experts.{{}}.up_gate_proj.weight",
"down_proj_expert_weight_key": f"{prefix}.experts.{{}}.down_proj.weight",
}
self.image_fused_moe = FusedMoE(
self.image_fused_moe = Ernie4_5_VLMoeBlock(
fd_config=fd_config,
reduce_results=False,
moe_intermediate_size=fd_config.model_config.moe_intermediate_size[1],
num_experts=fd_config.model_config.moe_num_experts[1],
expert_id_offset=fd_config.model_config.moe_num_experts[0],
top_k=fd_config.model_config.moe_k,
layer_idx=layer_id,
layer_id=layer_id,
prefix=f"{prefix}",
moe_tag="Image",
weight_key_map=weight_key_map,
expert_id_offset=fd_config.model_config.moe_num_experts[0],
)
self.image_fused_moe.extract_gate_correction_bias = self.extract_gate_correction_bias_image
else:
self.image_fused_moe = Ernie4_5_VLMLP(
fd_config=fd_config,
@@ -195,25 +225,11 @@ class Ernie4_5_VLMoE(nn.Layer):
reduce_results=False,
)
def extract_gate_correction_bias_text(self, gate_correction_bias_key, state_dict):
"""
extract_gate_correction_bias function.
"""
gate_correction_bias_tensor = get_tensor(state_dict[gate_correction_bias_key]).astype("float32")
return gate_correction_bias_tensor[0].unsqueeze(0)
def extract_gate_correction_bias_image(self, gate_correction_bias_key, state_dict):
"""
extract_gate_correction_bias function.
"""
gate_correction_bias_tensor = get_tensor(state_dict[gate_correction_bias_key]).astype("float32")
return gate_correction_bias_tensor[1].unsqueeze(0)
def load_state_dict(self, state_dict):
self.text_fused_moe.load_state_dict(state_dict)
self.image_fused_moe.load_state_dict(state_dict)
if self.text_fused_moe.moe_use_gate_correction_bias:
state_dict.pop(self.text_fused_moe.gate_correction_bias_key)
if self.text_fused_moe.experts.moe_use_gate_correction_bias:
state_dict.pop(self.text_fused_moe.experts.gate_correction_bias_key)
if self.num_shared_experts > 0:
self.shared_experts.load_state_dict(state_dict)

View File

@@ -32,6 +32,7 @@ from fastdeploy.model_executor.layers.activation import SiluAndMul
from fastdeploy.model_executor.layers.embeddings import VocabParallelEmbedding
from fastdeploy.model_executor.layers.linear import (
MergedColumnParallelLinear,
ReplicatedLinear,
RowParallelLinear,
)
from fastdeploy.model_executor.layers.lm_head import ParallelLMHead
@@ -41,6 +42,47 @@ from fastdeploy.model_executor.models.model_base import ModelForCasualLM
from fastdeploy.model_executor.models.qwen3 import Qwen3Attention
class Qwen3MoeBlock(nn.Layer):
def __init__(
self,
fd_config: FDConfig,
layer_id: int,
prefix: str = "",
) -> None:
super().__init__()
weight_key_map = {
"up_gate_proj_expert_weight_key": f"{prefix}.experts.{{}}.up_gate_proj.weight",
"down_proj_expert_weight_key": f"{prefix}.experts.{{}}.down_proj.weight",
}
self.experts = FusedMoE(
fd_config,
moe_intermediate_size=fd_config.model_config.moe_intermediate_size,
num_experts=fd_config.model_config.num_experts,
top_k=fd_config.model_config.num_experts_per_tok,
layer_idx=layer_id,
weight_key_map=weight_key_map,
)
self.gate = ReplicatedLinear(
fd_config=fd_config,
prefix=f"{prefix}.gate",
input_size=fd_config.model_config.hidden_size,
output_size=fd_config.model_config.num_experts,
with_bias=False,
skip_quant=True,
weight_dtype="float32",
)
def forward(self, x):
out = self.experts(x, self.gate)
return out
def load_state_dict(self, state_dict):
""" """
self.gate.load_state_dict(state_dict)
self.experts.load_state_dict(state_dict)
class Qwen3MLP(nn.Layer):
""" """
@@ -104,22 +146,13 @@ class Qwen3DecoderLayer(nn.Layer):
layer_id=layer_id,
prefix=f"{prefix}.self_attn",
)
weight_key_map = {
"gate_weight_key": f"{prefix}.mlp.gate.weight",
"up_gate_proj_expert_weight_key": f"{prefix}.mlp.experts.{{}}.up_gate_proj.weight",
"down_proj_expert_weight_key": f"{prefix}.mlp.experts.{{}}.down_proj.weight",
}
if fd_config.model_config.num_experts is not None and layer_id >= fd_config.model_config.moe_layer_start_index:
self.mlp = FusedMoE(
fd_config,
moe_intermediate_size=fd_config.model_config.moe_intermediate_size,
num_experts=fd_config.model_config.num_experts,
top_k=fd_config.model_config.num_experts_per_tok,
layer_idx=layer_id,
weight_key_map=weight_key_map,
)
mlp_only_layers = (
[] if not hasattr(fd_config.model_config, "mlp_only_layers") else fd_config.model_config.mlp_only_layers
)
if (layer_id not in mlp_only_layers) and (
fd_config.model_config.num_experts > 0 and (layer_id + 1) % fd_config.model_config.decoder_sparse_step == 0
):
self.mlp = Qwen3MoeBlock(fd_config, layer_id, prefix=f"{prefix}.mlp")
else:
self.mlp = Qwen3MLP(
fd_config,
@@ -279,6 +312,74 @@ class Qwen3MoeForCausalLM(ModelForCasualLM):
""" """
return "Qwen3MoeForCausalLM"
def get_expert_mapping(
self,
) -> list[tuple[str, str, int, str]]:
# (param_name, weight_name, expert_id, shard_id)
return FusedMoE.make_expert_params_mapping(
ckpt_gate_proj_name="gate_proj",
ckpt_down_proj_name="down_proj",
ckpt_up_proj_name="up_proj",
param_gate_up_proj_name="experts.up_gate_proj_",
param_down_proj_name="experts.down_proj_",
num_experts=self.fd_config.model_config.num_experts,
)
@paddle.no_grad()
def load_weights(self, weights_iterator) -> None:
"""
Load model parameters from a given weights_iterator object.
Args:
weights_iterator (Iterator): An iterator yielding (name, weight) pairs.
"""
from fastdeploy.model_executor.models.utils import default_weight_loader
stacked_params_mapping = [
# (param_name, shard_name, shard_id)
("qkv_proj", "q_proj", "q"),
("qkv_proj", "k_proj", "k"),
("qkv_proj", "v_proj", "v"),
("up_gate_proj", "gate_proj", "gate"),
("up_gate_proj", "up_proj", "up"),
("embed_tokens.embeddings", "embed_tokens", None),
("lm_head.linear", "lm_head", None),
]
expert_params_mapping = self.get_expert_mapping()
params_dict = dict(self.named_parameters())
for loaded_weight_name, loaded_weight in weights_iterator:
for param_name, weight_name, shard_id in stacked_params_mapping:
if weight_name not in loaded_weight_name:
continue
if "mlp.experts" in loaded_weight_name:
continue
model_param_name = loaded_weight_name.replace(weight_name, param_name)
if model_param_name not in params_dict:
continue
param = params_dict[model_param_name]
weight_loader = getattr(param, "weight_loader", default_weight_loader(self.fd_config))
weight_loader(param, loaded_weight, shard_id)
break
else:
for mapping in expert_params_mapping:
param_name, weight_name, expert_id, shard_id = mapping
if weight_name not in loaded_weight_name:
continue
model_param_name = loaded_weight_name.replace(weight_name, param_name)
if model_param_name not in params_dict:
continue
param = params_dict[model_param_name]
weight_loader = param.weight_loader
weight_loader(param, loaded_weight, shard_id=shard_id, expert_id=expert_id)
break
else:
if loaded_weight_name not in params_dict:
continue
param = params_dict[loaded_weight_name]
weight_loader = getattr(param, "weight_loader", default_weight_loader(self.fd_config))
weight_loader(param, loaded_weight)
@paddle.no_grad()
def set_state_dict(self, state_dict):
"""

View File

@@ -72,7 +72,11 @@ def default_weight_loader(fd_config: FDConfig) -> None:
loaded_weight = loaded_weight[..., shard_offset:shard_size]
else:
loaded_weight = loaded_weight[shard_offset:shard_size, ...]
loaded_weight = get_tensor(loaded_weight)
# mlp.gate.weight is precision-sensitive, so we cast it to float32 for computation
if param.dtype != loaded_weight.dtype:
loaded_weight = loaded_weight.cast(param.dtype)
assert param.shape == loaded_weight.shape, (
f" Attempted to load weight ({loaded_weight.shape}) " f"into parameter ({param.shape})"

View File

@@ -156,12 +156,12 @@ class Ernie4_5_MoeForCausalLMRL(Ernie4_5_MoeForCausalLM, BaseRLModel):
# Helper function to add layer mappings
def _add_layer_mappings(layer_idx: int):
# MoE specific mappings
self.infer_to_train_mapping[f"{base_name}.{layer_idx}.mlp.fused_moe.gate_weight"] = (
self.infer_to_train_mapping[f"{base_name}.{layer_idx}.mlp.gate.weight"] = (
f"{base_name}.{layer_idx}.mlp.gate.weight"
)
if self.fd_config.model_config.moe_use_aux_free:
self.infer_to_train_mapping[f"{base_name}.{layer_idx}.mlp.fused_moe.gate_correction_bias"] = (
self.infer_to_train_mapping[f"{base_name}.{layer_idx}.mlp.experts.gate_correction_bias"] = (
f"{base_name}.{layer_idx}.mlp.moe_statics.e_score_correction_bias"
)
@@ -169,7 +169,7 @@ class Ernie4_5_MoeForCausalLMRL(Ernie4_5_MoeForCausalLM, BaseRLModel):
for expert_idx in range(self.fd_config.model_config.moe_num_experts):
for ph in place_holders:
# up_gate_proj (up_gate_proj)
up_gate_proj_key = f"{base_name}.{layer_idx}.mlp.fused_moe.up_gate_proj_weight"
up_gate_proj_key = f"{base_name}.{layer_idx}.mlp.experts.up_gate_proj_weight"
if up_gate_proj_key not in self.infer_to_train_mapping:
self.infer_to_train_mapping[up_gate_proj_key] = []
self.infer_to_train_mapping[up_gate_proj_key].append(
@@ -177,7 +177,7 @@ class Ernie4_5_MoeForCausalLMRL(Ernie4_5_MoeForCausalLM, BaseRLModel):
)
# down_proj (down_proj)
down_proj_key = f"{base_name}.{layer_idx}.mlp.fused_moe.down_proj_weight"
down_proj_key = f"{base_name}.{layer_idx}.mlp.experts.down_proj_weight"
if down_proj_key not in self.infer_to_train_mapping:
self.infer_to_train_mapping[down_proj_key] = []
self.infer_to_train_mapping[down_proj_key].append(
@@ -230,13 +230,13 @@ class Ernie4_5_VLMoeForConditionalGenerationRL(Ernie4_5_VLMoeForConditionalGener
def _add_expert_mappings(layer_idx: int, moe_tag: str, expert_start: int):
# MoE specific mappings
gate_suffix = "" if moe_tag == "text" else "_1"
self.infer_to_train_mapping[f"{base_name}.{layer_idx}.mlp.{moe_tag}_fused_moe.gate_weight"] = (
self.infer_to_train_mapping[f"{base_name}.{layer_idx}.mlp.{moe_tag}_fused_moe.gate.weight"] = (
f"{base_name}.{layer_idx}.mlp.gate.weight{gate_suffix}"
)
if self.fd_config.model_config.moe_use_aux_free:
self.infer_to_train_mapping[
f"{base_name}.{layer_idx}.mlp.{moe_tag}_fused_moe.gate_correction_bias"
f"{base_name}.{layer_idx}.mlp.{moe_tag}_fused_moe.experts.gate_correction_bias"
] = f"{base_name}.{layer_idx}.mlp.moe_statics.e_score_correction_bias"
# Initialize defaultdict for expert weights
@@ -255,12 +255,12 @@ class Ernie4_5_VLMoeForConditionalGenerationRL(Ernie4_5_VLMoeForConditionalGener
expert_num_per_rank,
):
for ph in place_holders:
expert_mappings[f"{base_name}.{layer_idx}.mlp.{moe_tag}_fused_moe.up_gate_proj_weight"].append(
f"{base_name}.{layer_idx}.mlp.experts.{expert_idx}.up_gate_proj.{ph}"
)
expert_mappings[f"{base_name}.{layer_idx}.mlp.{moe_tag}_fused_moe.down_proj_weight"].append(
f"{base_name}.{layer_idx}.mlp.experts.{expert_idx}.down_proj.{ph}"
)
expert_mappings[
f"{base_name}.{layer_idx}.mlp.{moe_tag}_fused_moe.experts.up_gate_proj_weight"
].append(f"{base_name}.{layer_idx}.mlp.experts.{expert_idx}.up_gate_proj.{ph}")
expert_mappings[
f"{base_name}.{layer_idx}.mlp.{moe_tag}_fused_moe.experts.down_proj_weight"
].append(f"{base_name}.{layer_idx}.mlp.experts.{expert_idx}.down_proj.{ph}")
self.infer_to_train_mapping.update(expert_mappings)
moe_layer_start_index = self.fd_config.model_config.moe_layer_start_index
@@ -375,12 +375,12 @@ class Qwen3MoeForCausalLMRL(Qwen3MoeForCausalLM, BaseRLModel):
# Helper function to add layer mappings
def _add_layer_mappings(layer_idx: int):
# MoE specific mappings
self.infer_to_train_mapping[f"{base_name}.{layer_idx}.mlp.gate_weight"] = (
self.infer_to_train_mapping[f"{base_name}.{layer_idx}.mlp.gate.weight"] = (
f"{base_name}.{layer_idx}.mlp.gate.weight"
)
if self.fd_config.moe_config.moe_use_aux_free:
self.infer_to_train_mapping[f"{base_name}.{layer_idx}.mlp.fused_moe.gate_correction_bias"] = (
self.infer_to_train_mapping[f"{base_name}.{layer_idx}.mlp.experts.gate_correction_bias"] = (
f"{base_name}.{layer_idx}.mlp.moe_statics.e_score_correction_bias"
)
@@ -388,7 +388,7 @@ class Qwen3MoeForCausalLMRL(Qwen3MoeForCausalLM, BaseRLModel):
for expert_idx in range(self.fd_config.moe_config.num_experts):
for ph in place_holders:
# up_gate_proj (up_gate_proj)
up_gate_proj_key = f"{base_name}.{layer_idx}.mlp.up_gate_proj_weight"
up_gate_proj_key = f"{base_name}.{layer_idx}.mlp.experts.up_gate_proj_weight"
if up_gate_proj_key not in self.infer_to_train_mapping:
self.infer_to_train_mapping[up_gate_proj_key] = []
self.infer_to_train_mapping[up_gate_proj_key].append(
@@ -396,7 +396,7 @@ class Qwen3MoeForCausalLMRL(Qwen3MoeForCausalLM, BaseRLModel):
)
# down_proj (down_proj)
down_proj_key = f"{base_name}.{layer_idx}.mlp.down_proj_weight"
down_proj_key = f"{base_name}.{layer_idx}.mlp.experts.down_proj_weight"
if down_proj_key not in self.infer_to_train_mapping:
self.infer_to_train_mapping[down_proj_key] = []
self.infer_to_train_mapping[down_proj_key].append(

File diff suppressed because it is too large Load Diff

View File

@@ -13,7 +13,6 @@
# limitations under the License.
import argparse
import difflib
from paddleformers.trl.llm_utils import init_dist_env
@@ -50,23 +49,35 @@ for k, v in actor_eval_model.get_name_mappings_to_training().items():
content += f"{k}:{v}\n"
def compare_strings(a: str, b: str) -> bool:
if a == b:
print("✅ 两个字符串完全一致")
return True
def compare_strings_line_by_line(a: str, b: str) -> bool:
"""
Compare two multiline strings line by line.
print("❌ 字符串不一致,差异如下(上下文差异显示):")
diff = difflib.ndiff(a.splitlines(), b.splitlines())
for line in diff:
if line.startswith("- ") or line.startswith("+ "):
print(line)
Returns:
True if all lines match exactly in order and content.
False if any line differs or the number of lines is not equal.
"""
a_lines = a.splitlines()
b_lines = b.splitlines()
return False
if len(a_lines) != len(b_lines):
print(f"❌ Mismatch in number of lines: expected {len(a_lines)}, but got {len(b_lines)}.")
return False
for i, (line_a, line_b) in enumerate(zip(a_lines, b_lines)):
if line_a != line_b:
print(f"❌ Difference found on line {i + 1}:")
print(f" Expected: {repr(line_a)}")
print(f" Actual : {repr(line_b)}")
return False
print("✅ All lines match exactly.")
return True
with open("baseline.txt", "r", encoding="utf-8") as f:
baseline = f.read()
assert compare_strings(baseline, content), (
assert compare_strings_line_by_line(baseline, content), (
"In the unittest of RL scenario, your modification "
"caused inconsistency in the content before and after. Please fix it. "
"Can request assistance from yuanlehome or gzy19990617 (github id)."