mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-21 15:49:31 +08:00
qwen3_moe (#3084)
This commit is contained in:
@@ -32,6 +32,7 @@ from fastdeploy.model_executor.layers.activation import SiluAndMul
|
||||
from fastdeploy.model_executor.layers.embeddings import VocabParallelEmbedding
|
||||
from fastdeploy.model_executor.layers.linear import (
|
||||
MergedColumnParallelLinear,
|
||||
ReplicatedLinear,
|
||||
RowParallelLinear,
|
||||
)
|
||||
from fastdeploy.model_executor.layers.lm_head import ParallelLMHead
|
||||
@@ -41,6 +42,47 @@ from fastdeploy.model_executor.models.model_base import ModelForCasualLM
|
||||
from fastdeploy.model_executor.models.qwen3 import Qwen3Attention
|
||||
|
||||
|
||||
class Qwen3MoeBlock(nn.Layer):
|
||||
def __init__(
|
||||
self,
|
||||
fd_config: FDConfig,
|
||||
layer_id: int,
|
||||
prefix: str = "",
|
||||
) -> None:
|
||||
super().__init__()
|
||||
weight_key_map = {
|
||||
"up_gate_proj_expert_weight_key": f"{prefix}.experts.{{}}.up_gate_proj.weight",
|
||||
"down_proj_expert_weight_key": f"{prefix}.experts.{{}}.down_proj.weight",
|
||||
}
|
||||
self.experts = FusedMoE(
|
||||
fd_config,
|
||||
moe_intermediate_size=fd_config.model_config.moe_intermediate_size,
|
||||
num_experts=fd_config.model_config.num_experts,
|
||||
top_k=fd_config.model_config.num_experts_per_tok,
|
||||
layer_idx=layer_id,
|
||||
weight_key_map=weight_key_map,
|
||||
)
|
||||
|
||||
self.gate = ReplicatedLinear(
|
||||
fd_config=fd_config,
|
||||
prefix=f"{prefix}.gate",
|
||||
input_size=fd_config.model_config.hidden_size,
|
||||
output_size=fd_config.model_config.num_experts,
|
||||
with_bias=False,
|
||||
skip_quant=True,
|
||||
weight_dtype="float32",
|
||||
)
|
||||
|
||||
def forward(self, x):
|
||||
out = self.experts(x, self.gate)
|
||||
return out
|
||||
|
||||
def load_state_dict(self, state_dict):
|
||||
""" """
|
||||
self.gate.load_state_dict(state_dict)
|
||||
self.experts.load_state_dict(state_dict)
|
||||
|
||||
|
||||
class Qwen3MLP(nn.Layer):
|
||||
""" """
|
||||
|
||||
@@ -104,22 +146,13 @@ class Qwen3DecoderLayer(nn.Layer):
|
||||
layer_id=layer_id,
|
||||
prefix=f"{prefix}.self_attn",
|
||||
)
|
||||
|
||||
weight_key_map = {
|
||||
"gate_weight_key": f"{prefix}.mlp.gate.weight",
|
||||
"up_gate_proj_expert_weight_key": f"{prefix}.mlp.experts.{{}}.up_gate_proj.weight",
|
||||
"down_proj_expert_weight_key": f"{prefix}.mlp.experts.{{}}.down_proj.weight",
|
||||
}
|
||||
|
||||
if fd_config.model_config.num_experts is not None and layer_id >= fd_config.model_config.moe_layer_start_index:
|
||||
self.mlp = FusedMoE(
|
||||
fd_config,
|
||||
moe_intermediate_size=fd_config.model_config.moe_intermediate_size,
|
||||
num_experts=fd_config.model_config.num_experts,
|
||||
top_k=fd_config.model_config.num_experts_per_tok,
|
||||
layer_idx=layer_id,
|
||||
weight_key_map=weight_key_map,
|
||||
)
|
||||
mlp_only_layers = (
|
||||
[] if not hasattr(fd_config.model_config, "mlp_only_layers") else fd_config.model_config.mlp_only_layers
|
||||
)
|
||||
if (layer_id not in mlp_only_layers) and (
|
||||
fd_config.model_config.num_experts > 0 and (layer_id + 1) % fd_config.model_config.decoder_sparse_step == 0
|
||||
):
|
||||
self.mlp = Qwen3MoeBlock(fd_config, layer_id, prefix=f"{prefix}.mlp")
|
||||
else:
|
||||
self.mlp = Qwen3MLP(
|
||||
fd_config,
|
||||
@@ -279,6 +312,74 @@ class Qwen3MoeForCausalLM(ModelForCasualLM):
|
||||
""" """
|
||||
return "Qwen3MoeForCausalLM"
|
||||
|
||||
def get_expert_mapping(
|
||||
self,
|
||||
) -> list[tuple[str, str, int, str]]:
|
||||
# (param_name, weight_name, expert_id, shard_id)
|
||||
return FusedMoE.make_expert_params_mapping(
|
||||
ckpt_gate_proj_name="gate_proj",
|
||||
ckpt_down_proj_name="down_proj",
|
||||
ckpt_up_proj_name="up_proj",
|
||||
param_gate_up_proj_name="experts.up_gate_proj_",
|
||||
param_down_proj_name="experts.down_proj_",
|
||||
num_experts=self.fd_config.model_config.num_experts,
|
||||
)
|
||||
|
||||
@paddle.no_grad()
|
||||
def load_weights(self, weights_iterator) -> None:
|
||||
"""
|
||||
Load model parameters from a given weights_iterator object.
|
||||
|
||||
Args:
|
||||
weights_iterator (Iterator): An iterator yielding (name, weight) pairs.
|
||||
"""
|
||||
|
||||
from fastdeploy.model_executor.models.utils import default_weight_loader
|
||||
|
||||
stacked_params_mapping = [
|
||||
# (param_name, shard_name, shard_id)
|
||||
("qkv_proj", "q_proj", "q"),
|
||||
("qkv_proj", "k_proj", "k"),
|
||||
("qkv_proj", "v_proj", "v"),
|
||||
("up_gate_proj", "gate_proj", "gate"),
|
||||
("up_gate_proj", "up_proj", "up"),
|
||||
("embed_tokens.embeddings", "embed_tokens", None),
|
||||
("lm_head.linear", "lm_head", None),
|
||||
]
|
||||
expert_params_mapping = self.get_expert_mapping()
|
||||
params_dict = dict(self.named_parameters())
|
||||
for loaded_weight_name, loaded_weight in weights_iterator:
|
||||
for param_name, weight_name, shard_id in stacked_params_mapping:
|
||||
if weight_name not in loaded_weight_name:
|
||||
continue
|
||||
if "mlp.experts" in loaded_weight_name:
|
||||
continue
|
||||
model_param_name = loaded_weight_name.replace(weight_name, param_name)
|
||||
if model_param_name not in params_dict:
|
||||
continue
|
||||
param = params_dict[model_param_name]
|
||||
weight_loader = getattr(param, "weight_loader", default_weight_loader(self.fd_config))
|
||||
weight_loader(param, loaded_weight, shard_id)
|
||||
break
|
||||
else:
|
||||
for mapping in expert_params_mapping:
|
||||
param_name, weight_name, expert_id, shard_id = mapping
|
||||
if weight_name not in loaded_weight_name:
|
||||
continue
|
||||
model_param_name = loaded_weight_name.replace(weight_name, param_name)
|
||||
if model_param_name not in params_dict:
|
||||
continue
|
||||
param = params_dict[model_param_name]
|
||||
weight_loader = param.weight_loader
|
||||
weight_loader(param, loaded_weight, shard_id=shard_id, expert_id=expert_id)
|
||||
break
|
||||
else:
|
||||
if loaded_weight_name not in params_dict:
|
||||
continue
|
||||
param = params_dict[loaded_weight_name]
|
||||
weight_loader = getattr(param, "weight_loader", default_weight_loader(self.fd_config))
|
||||
weight_loader(param, loaded_weight)
|
||||
|
||||
@paddle.no_grad()
|
||||
def set_state_dict(self, state_dict):
|
||||
"""
|
||||
|
Reference in New Issue
Block a user