[Doc] Update Android SDK usage docs (#727)

* [Doc] Update Android Usage docs

* [Doc] Update Android en build docs

* fix typos
This commit is contained in:
DefTruth
2022-11-28 18:46:14 +08:00
committed by GitHub
parent b0eb9aa253
commit 205ead8f68
8 changed files with 226 additions and 123 deletions

View File

@@ -105,7 +105,7 @@
- [1. 如何配置模型部署的推理后端](docs/cn/faq/how_to_change_backend.md) - [1. 如何配置模型部署的推理后端](docs/cn/faq/how_to_change_backend.md)
- [2. Windows上C++ SDK如何使用](docs/cn/faq/use_sdk_on_windows.md) - [2. Windows上C++ SDK如何使用](docs/cn/faq/use_sdk_on_windows.md)
- [3. Android上如何使用FastDeploy](docs/cn/faq/use_sdk_on_android.md)(进行中) - [3. Android上如何使用FastDeploy](java/android/README.md)
- [4. TensorRT使用中的一些技巧](docs/cn/faq/tensorrt_tricks.md) - [4. TensorRT使用中的一些技巧](docs/cn/faq/tensorrt_tricks.md)
- [5. 如何增加新的模型](docs/cn/faq/develop_a_new_model.md)(进行中) - [5. 如何增加新的模型](docs/cn/faq/develop_a_new_model.md)(进行中)

View File

@@ -104,7 +104,7 @@ Including image classification, object detection, image segmentation, face detec
- [1. How to Change Inference Backends](docs/en/faq/how_to_change_backend.md) - [1. How to Change Inference Backends](docs/en/faq/how_to_change_backend.md)
- [2. How to Use FastDeploy C++ SDK on Windows Platform](docs/en/faq/use_sdk_on_windows.md) - [2. How to Use FastDeploy C++ SDK on Windows Platform](docs/en/faq/use_sdk_on_windows.md)
- [3. How to Use FastDeploy C++ SDK on Android Platform](docs/en/faq/use_sdk_on_android.md)(To be Continued) - [3. How to Use FastDeploy C++ SDK on Android Platform](java/android/README_EN.md)(To be Continued)
- [4. Tricks of TensorRT](docs/en/faq/tensorrt_tricks.md) - [4. Tricks of TensorRT](docs/en/faq/tensorrt_tricks.md)
- [5. How to Develop a New Model](docs/en/faq/develop_a_new_model.md)(To be Continued) - [5. How to Develop a New Model](docs/en/faq/develop_a_new_model.md)(To be Continued)

View File

@@ -44,9 +44,9 @@ public class PicoDet {
} }
} }
``` ```
这些被标记为native的接口是需要通过JNI的方式实现并在Java层供PicoDet类调用。完整的PicoDet Java代码请参考 [PicoDet.java](../../../examples/vision/detection/paddledetection/android/app/src/main/java/com/baidu/paddle/fastdeploy/vision/detection/PicoDet.java) 。各个函数说明如下: 这些被标记为native的接口是需要通过JNI的方式实现并在Java层供PicoDet类调用。完整的PicoDet Java代码请参考 [PicoDet.java](../../../java/android/fastdeploy/src/main/java/com/baidu/paddle/fastdeploy/vision/detection/PicoDet.java) 。各个函数说明如下:
- `bindNative`: C++层初始化模型资源,如果成功初始化,则返回指向该模型的指针(long类型)否则返回0指针 - `bindNative`: C++层初始化模型资源,如果成功初始化,则返回指向该模型的指针(long类型)否则返回0指针
- `predictNative`: 通过已经初始化好的模型指针在C++层执行预测代码如果预测成功则返回指向预测结果的指针否则返回0指针。注意该结果指针在当次预测使用完之后需要释放具体操作请参考 [PicoDet.java](../../../examples/vision/detection/paddledetection/android/app/src/main/java/com/baidu/paddle/fastdeploy/vision/detection/PicoDet.java) 中的predict函数。 - `predictNative`: 通过已经初始化好的模型指针在C++层执行预测代码如果预测成功则返回指向预测结果的指针否则返回0指针。注意该结果指针在当次预测使用完之后需要释放具体操作请参考 [PicoDet.java](../../../java/android/fastdeploy/src/main/java/com/baidu/paddle/fastdeploy/vision/detection/PicoDet.java) 中的predict函数。
- `releaseNative`: 根据传入的模型指针在C++层释放模型资源。 - `releaseNative`: 根据传入的模型指针在C++层释放模型资源。
## Android Studio 生成JNI函数定义 ## Android Studio 生成JNI函数定义
@@ -70,89 +70,96 @@ Android Studio 生成 JNI 函数定义: 鼠标停留在Java中定义的native函
以下为PicoDet JNI层实现的示例相关的辅助函数不在此处赘述完整的C++代码请参考 [android/app/src/main/cpp](../../../examples/vision/detection/paddledetection/android/app/src/main/cpp/). 以下为PicoDet JNI层实现的示例相关的辅助函数不在此处赘述完整的C++代码请参考 [android/app/src/main/cpp](../../../examples/vision/detection/paddledetection/android/app/src/main/cpp/).
```C++ ```C++
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <jni.h> // NOLINT #include <jni.h> // NOLINT
#include "fastdeploy_jni.h" // NOLINT #include "fastdeploy_jni/convert_jni.h" // NOLINT
#include "fastdeploy_jni/assets_loader_jni.h" // NOLINT
#include "fastdeploy_jni/runtime_option_jni.h" // NOLINT
#include "fastdeploy_jni/vision/results_jni.h" // NOLINT
#include "fastdeploy_jni/vision/detection/detection_utils_jni.h" // NOLINT
namespace fni = fastdeploy::jni;
namespace vision = fastdeploy::vision;
namespace detection = fastdeploy::vision::detection;
#ifdef __cplusplus #ifdef __cplusplus
extern "C" { extern "C" {
#endif #endif
// 绑定C++层的模型
JNIEXPORT jlong JNICALL JNIEXPORT jlong JNICALL
Java_com_baidu_paddle_fastdeploy_vision_detection_PicoDet_bindNative( Java_com_baidu_paddle_fastdeploy_vision_detection_PicoDet_bindNative(
JNIEnv *env, jclass clazz, jstring model_file, jstring params_file, JNIEnv *env, jobject thiz, jstring model_file, jstring params_file,
jstring config_file, jint cpu_num_thread, jboolean enable_lite_fp16, jstring config_file, jobject runtime_option, jstring label_file) {
jint lite_power_mode, jstring lite_optimized_model_dir, auto c_model_file = fni::ConvertTo<std::string>(env, model_file);
jboolean enable_record_time_of_runtime, jstring label_file) { auto c_params_file = fni::ConvertTo<std::string>(env, params_file);
std::string c_model_file = fastdeploy::jni::ConvertTo<std::string>(env, model_file); auto c_config_file = fni::ConvertTo<std::string>(env, config_file);
std::string c_params_file = fastdeploy::jni::ConvertTo<std::string>(env, params_file); auto c_label_file = fni::ConvertTo<std::string>(env, label_file);
std::string c_config_file = astdeploy::jni::ConvertTo<std::string>(env, config_file); auto c_runtime_option = fni::NewCxxRuntimeOption(env, runtime_option);
std::string c_label_file = fastdeploy::jni::ConvertTo<std::string>(env, label_file); auto c_model_ptr = new detection::PicoDet(
std::string c_lite_optimized_model_dir = fastdeploy::jni::ConvertTo<std::string>(env, lite_optimized_model_dir); c_model_file, c_params_file, c_config_file, c_runtime_option);
auto c_cpu_num_thread = static_cast<int>(cpu_num_thread); INITIALIZED_OR_RETURN(c_model_ptr)
auto c_enable_lite_fp16 = static_cast<bool>(enable_lite_fp16);
auto c_lite_power_mode = static_cast<fastdeploy::LitePowerMode>(lite_power_mode); #ifdef ENABLE_RUNTIME_PERF
fastdeploy::RuntimeOption c_option; c_model_ptr->EnableRecordTimeOfRuntime();
c_option.UseCpu(); #endif
c_option.UseLiteBackend(); if (!c_label_file.empty()) {
c_option.SetCpuThreadNum(c_cpu_num_thread); fni::AssetsLoader::LoadDetectionLabels(c_label_file);
c_option.SetLitePowerMode(c_lite_power_mode);
c_option.SetLiteOptimizedModelDir(c_lite_optimized_model_dir);
if (c_enable_lite_fp16) {
c_option.EnableLiteFP16();
} }
// 如果您实现的是其他模型比如PPYOLOE请注意修改此处绑定的C++类型 vision::EnableFlyCV();
auto c_model_ptr = new fastdeploy::vision::detection::PicoDet( return reinterpret_cast<jlong>(c_model_ptr);
c_model_file, c_params_file, c_config_file, c_option);
// Enable record Runtime time costs.
if (enable_record_time_of_runtime) {
c_model_ptr->EnableRecordTimeOfRuntime();
}
// Load detection labels if label path is not empty.
if ((!fastdeploy::jni::AssetsLoaderUtils::IsDetectionLabelsLoaded()) &&
(!c_label_file.empty())) {
fastdeploy::jni::AssetsLoaderUtils::LoadDetectionLabels(c_label_file);
}
// WARN: need to release manually in Java !
return reinterpret_cast<jlong>(c_model_ptr); // native model context
} }
// 通过传入的模型指针在C++层进行预测 JNIEXPORT jobject JNICALL
JNIEXPORT jlong JNICALL
Java_com_baidu_paddle_fastdeploy_vision_detection_PicoDet_predictNative( Java_com_baidu_paddle_fastdeploy_vision_detection_PicoDet_predictNative(
JNIEnv *env, jclass clazz, jlong native_model_context, JNIEnv *env, jobject thiz, jlong cxx_context, jobject argb8888_bitmap,
jobject argb8888_bitmap, jboolean saved, jstring saved_image_path, jboolean save_image, jstring save_path, jboolean rendering,
jfloat score_threshold, jboolean rendering) { jfloat score_threshold) {
if (native_model_context == 0) { if (cxx_context == 0) {
return 0; return NULL;
} }
cv::Mat c_bgr; cv::Mat c_bgr;
if (!fastdeploy::jni::ARGB888Bitmap2BGR(env, argb8888_bitmap, &c_bgr)) { if (!fni::ARGB888Bitmap2BGR(env, argb8888_bitmap, &c_bgr)) {
return 0; return NULL;
} }
auto c_model_ptr = reinterpret_cast<fastdeploy::vision::detection::PicoDet *>( auto c_model_ptr = reinterpret_cast<detection::PicoDet *>(cxx_context);
native_model_context); vision::DetectionResult c_result;
auto c_result_ptr = new fastdeploy::vision::DetectionResult(); auto t = fni::GetCurrentTime();
t = fastdeploy::jni::GetCurrentTime(); c_model_ptr->Predict(&c_bgr, &c_result);
if (!c_model_ptr->Predict(&c_bgr, c_result_ptr)) { PERF_TIME_OF_RUNTIME(c_model_ptr, t)
delete c_result_ptr;
return 0; if (rendering) {
fni::RenderingDetection(env, c_bgr, c_result, argb8888_bitmap, save_image,
score_threshold, save_path);
} }
// ...
return reinterpret_cast<jlong>(c_result_ptr); // native result context return fni::NewJavaResultFromCxx(env, reinterpret_cast<void *>(&c_result),
vision::ResultType::DETECTION);
} }
// 在C++层释放模型资源
JNIEXPORT jboolean JNICALL JNIEXPORT jboolean JNICALL
Java_com_baidu_paddle_fastdeploy_vision_detection_PicoDet_releaseNative( Java_com_baidu_paddle_fastdeploy_vision_detection_PicoDet_releaseNative(
JNIEnv *env, jclass clazz, jlong native_model_context) { JNIEnv *env, jobject thiz, jlong cxx_context) {
if (native_model_context == 0) { if (cxx_context == 0) {
return JNI_FALSE; return JNI_FALSE;
} }
auto c_model_ptr = reinterpret_cast<fastdeploy::vision::detection::PicoDet *>( auto c_model_ptr = reinterpret_cast<detection::PicoDet *>(cxx_context);
native_model_context); PERF_TIME_OF_RUNTIME(c_model_ptr, -1)
// ...
delete c_model_ptr; delete c_model_ptr;
LOGD("[End] Release PicoDet in native !");
return JNI_TRUE; return JNI_TRUE;
} }
@@ -184,6 +191,11 @@ android {
version '3.10.2' version '3.10.2'
} }
} }
sourceSets {
main {
jniLibs.srcDirs = ['libs']
}
}
ndkVersion '20.1.5948944' ndkVersion '20.1.5948944'
} }
``` ```
@@ -192,7 +204,8 @@ android {
cmake_minimum_required(VERSION 3.10.2) cmake_minimum_required(VERSION 3.10.2)
project("fastdeploy_jni") project("fastdeploy_jni")
set(FastDeploy_DIR "${CMAKE_CURRENT_SOURCE_DIR}/../../../libs/fastdeploy-android-0.4.0-shared") # 其中 xxx 表示对应C++ SDK的版本号
set(FastDeploy_DIR "${CMAKE_CURRENT_SOURCE_DIR}/../../../libs/fastdeploy-android-xxx-shared")
find_package(FastDeploy REQUIRED) find_package(FastDeploy REQUIRED)
@@ -221,7 +234,7 @@ target_link_libraries(
${log-lib} ${log-lib}
) )
``` ```
完整的工程示例,请参考 [android/app/src/main/cpp/CMakelists.txt](../../../examples/vision/detection/paddledetection/android/app/src/main/cpp/) 以及 [android/app/build.gradle](../../../examples/vision/detection/paddledetection/android/app/build.gradle). 完整的工程示例,请参考 [CMakelists.txt](../../../java/android/fastdeploy/src/main/cpp/CMakeLists.txt) 以及 [build.gradle](../../../java/android/fastdeploy/build.gradle).
## 更多FastDeploy Android 使用案例 ## 更多FastDeploy Android 使用案例
<div id="Examples"></div> <div id="Examples"></div>

View File

@@ -1,2 +0,0 @@
## 在 Android 中使用 FastDeploy Java SDK
- TODO

View File

@@ -1,3 +0,0 @@
# Android平台使用FastDeploy部署
进行中...

View File

@@ -1,3 +1,97 @@
# How to Build Android Deployment Library # How to Build FastDeploy Android C++ SDK
coming soon... FastDeploy supports Paddle-Lite backend on Android. It supports both armeabi-v7a and arm64-v8a cpu architectures, and supports fp16 precision inference on the armv8.2 architecture. The relevant compilation options are described as follows:
|Option|Default|Description|Remark|
|:---|:---|:---|:---|
|ENABLE_LITE_BACKEND|OFF|It needs to be set to ON when compiling the Android library| - |
|WITH_OPENCV_STATIC|OFF|Whether to use the OpenCV static library| - |
|WITH_LITE_STATIC|OFF|Whether to use the Paddle-Lite static library| NOT Support now |
Please reference [FastDeploy Compile Options](./README.md) for more details.
## Build Android C++ SDK
Prerequisite for Compiling on Android:
- Android SDK API >= 21
- Android NDK >= 20 (Only support clang toolchain now)
- cmake >= 3.10.0
Please check if the Android SDK and NDK is ready or not before building
```bash
echo $ANDROID_SDK
/Users/xxx/Library/Android/sdk
echo $ANDROID_NDK
/Users/xxx/Library/Android/sdk/ndk/25.1.8937393
```
It is recommended to use NDK>=20 for cross compilation, the compilation command is as follows
```bash
# Download the latest source code
git clone https://github.com/PaddlePaddle/FastDeploy.git
cd FastDeploy
# Setting up Android toolchanin
ANDROID_ABI=arm64-v8a # 'arm64-v8a', 'armeabi-v7a'
ANDROID_PLATFORM="android-21" # API >= 21
ANDROID_STL=c++_shared # 'c++_shared', 'c++_static'
ANDROID_TOOLCHAIN=clang # 'clang' only
TOOLCHAIN_FILE=${ANDROID_NDK}/build/cmake/android.toolchain.cmake
# Create build directory
BUILD_ROOT=build/Android
BUILD_DIR=${BUILD_ROOT}/${ANDROID_ABI}-api-21
FASDEPLOY_INSTALL_DIR="${BUILD_DIR}/install"
mkdir build && mkdir ${BUILD_ROOT} && mkdir ${BUILD_DIR}
cd ${BUILD_DIR}
# CMake configuration with Android toolchain
cmake -DCMAKE_TOOLCHAIN_FILE=${TOOLCHAIN_FILE} \
-DCMAKE_BUILD_TYPE=MinSizeRel \
-DANDROID_ABI=${ANDROID_ABI} \
-DANDROID_NDK=${ANDROID_NDK} \
-DANDROID_PLATFORM=${ANDROID_PLATFORM} \
-DANDROID_STL=${ANDROID_STL} \
-DANDROID_TOOLCHAIN=${ANDROID_TOOLCHAIN} \
-DENABLE_LITE_BACKEND=ON \
-DENABLE_VISION=ON \
-DCMAKE_INSTALL_PREFIX=${FASDEPLOY_INSTALL_DIR} \
-Wno-dev ../../..
# Build FastDeploy Android C++ SDK
make -j8
make install
```
After the compilation is complete, the Android C++ SDK is saved in the `build/Android/arm64-v8a-api-21/install` directory, the directory structure is as follows
```bash
➜ tree . -d -L 3
.
├── examples
├── include
│   └── fastdeploy # FastDeploy headers
├── lib
│   └── arm64-v8a # FastDeploy Android libs
└── third_libs # Third parties libs
└── install
├── opencv
├── flycv
└── paddlelite
```
You can check the Android C++ SDK use cases in the examples/vision directory
```bash
.
├── classification
│   ├── paddleclas
│   │   ├── android # classification demo for Android
│   │   ├── cpp
...
├── detection
│   ├── paddledetection
│   │   ├── android # object detection demo for Android
│   │   ├── cpp
...
```
About How to use FastDeploy Android C++ SDK, Please refer to the use case documentation:
- [Image Classification Android Documentation](../../../examples/vision/classification/paddleclas/android/README.md)
- [Object Detection Android Documentation](../../../examples/vision/detection/paddledetection/android/README.md)
- [Using FastDeploy C++ SDK in Android via JNI](../../en/faq/use_cpp_sdk_on_android.md)

View File

@@ -0,0 +1 @@
- TODO