mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-12-24 13:28:13 +08:00
dcu adapter ernie45t (#2756)
Co-authored-by: lifu <lifu@sugon.com> Co-authored-by: yongqiangma <xing.wo@163.com>
This commit is contained in:
112
fastdeploy/worker/dcu_worker.py
Normal file
112
fastdeploy/worker/dcu_worker.py
Normal file
@@ -0,0 +1,112 @@
|
||||
"""
|
||||
# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License"
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
"""
|
||||
import gc
|
||||
import time
|
||||
from typing import List, Optional
|
||||
|
||||
import paddle
|
||||
import paddle.nn as nn
|
||||
|
||||
from fastdeploy.config import FDConfig
|
||||
from fastdeploy.engine.request import Request
|
||||
from fastdeploy.utils import get_logger
|
||||
from fastdeploy.worker.gpu_model_runner import GPUModelRunner
|
||||
from fastdeploy.worker.output import ModelRunnerOutput
|
||||
from fastdeploy.worker.gpu_worker import GpuWorker
|
||||
|
||||
logger = get_logger("dcu_worker", "dcu_worker.log")
|
||||
|
||||
|
||||
class DcuWorker(GpuWorker):
|
||||
""" """
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
fd_config: FDConfig,
|
||||
local_rank: int,
|
||||
rank: int,
|
||||
):
|
||||
super().__init__(
|
||||
fd_config=fd_config,
|
||||
local_rank=local_rank,
|
||||
rank=rank,
|
||||
)
|
||||
pass
|
||||
|
||||
def determine_available_memory(self) -> int:
|
||||
"""
|
||||
Profiles the peak memory usage of the model to determine how much
|
||||
memory can be used for KV cache without OOMs.
|
||||
|
||||
The engine will first conduct a profiling of the existing memory usage.
|
||||
Then, it calculate the maximum possible number of GPU and CPU blocks
|
||||
that can be allocated with the remaining free memory.
|
||||
|
||||
Tip:
|
||||
You may limit the usage of GPU memory
|
||||
by adjusting the `gpu_memory_utilization` parameter.
|
||||
"""
|
||||
# 1. Record memory state before profile run
|
||||
Gb = 1024**3
|
||||
start_time = time.perf_counter()
|
||||
paddle.device.cuda.reset_max_memory_reserved(self.local_rank)
|
||||
paddle.device.cuda.reset_max_memory_allocated(self.local_rank)
|
||||
paddle_reserved_mem_before_run = paddle.device.cuda.max_memory_reserved(
|
||||
self.local_rank)
|
||||
paddle_allocated_mem_before_run = paddle.device.cuda.max_memory_allocated(
|
||||
self.local_rank) # not reserved
|
||||
|
||||
total_gpu_memory = paddle.device.cuda.get_device_properties(self.local_rank).total_memory
|
||||
before_used_gpu_memory = paddle.device.cuda.memory_allocated(self.local_rank)
|
||||
|
||||
|
||||
logger.info((
|
||||
"Before running the profile, the memory usage info is as follows:",
|
||||
f"\nDevice Total memory: {total_gpu_memory / Gb}",
|
||||
f"\nDevice used memory: {before_used_gpu_memory / Gb}",
|
||||
f"\nPaddle reserved memory: {paddle_reserved_mem_before_run / Gb}",
|
||||
f"\nPaddle allocated memory: {paddle_allocated_mem_before_run / Gb}"))
|
||||
|
||||
# 2. Profile run
|
||||
self.model_runner.profile_run()
|
||||
|
||||
# 3. Statistical memory information
|
||||
paddle_reserved_mem_after_run = paddle.device.cuda.max_memory_reserved(
|
||||
self.local_rank)
|
||||
paddle_allocated_mem_after_run = paddle.device.cuda.max_memory_allocated(
|
||||
self.local_rank)
|
||||
|
||||
after_used_gpu_memory = paddle.device.cuda.memory_allocated(self.local_rank)
|
||||
|
||||
# v0 worker
|
||||
model_block_memory_used = self.cal_theortical_kvcache()
|
||||
paddle.device.cuda.empty_cache()
|
||||
paddle_peak_increase = paddle_reserved_mem_after_run - paddle_allocated_mem_before_run
|
||||
available_kv_cache_memory = total_gpu_memory * \
|
||||
self.parallel_config.gpu_memory_utilization - after_used_gpu_memory - paddle_peak_increase
|
||||
available_kv_cache_memory += model_block_memory_used * self.parallel_config.max_block_num
|
||||
|
||||
end_time = time.perf_counter()
|
||||
logger.info(
|
||||
("After running the profile, the memory usage info is as follows:",
|
||||
f"\nDevice Total memory: {total_gpu_memory / Gb}",
|
||||
f"\nDevice used memory: {after_used_gpu_memory / Gb}",
|
||||
f"\nPaddle reserved memory: {paddle_reserved_mem_after_run / Gb}",
|
||||
f"\nPaddle allocated memory: {paddle_allocated_mem_after_run / Gb}",
|
||||
f"\nAvailable KV Cache meomory: {available_kv_cache_memory / Gb}",
|
||||
f"Profile time: {end_time - start_time}"))
|
||||
|
||||
return available_kv_cache_memory # return to caculate the block num in this device
|
||||
Reference in New Issue
Block a user