Add Quantization Function. (#256)

* Add PaddleOCR Support

* Add PaddleOCR Support

* Add PaddleOCRv3 Support

* Add PaddleOCRv3 Support

* Update README.md

* Update README.md

* Update README.md

* Update README.md

* Add PaddleOCRv3 Support

* Add PaddleOCRv3 Supports

* Add PaddleOCRv3 Suport

* Fix Rec diff

* Remove useless functions

* Remove useless comments

* Add PaddleOCRv2 Support

* Add PaddleOCRv3 & PaddleOCRv2 Support

* remove useless parameters

* Add utils of sorting det boxes

* Fix code naming convention

* Fix code naming convention

* Fix code naming convention

* Fix bug in the Classify process

* Imporve OCR Readme

* Fix diff in Cls model

* Update Model Download Link in Readme

* Fix diff in PPOCRv2

* Improve OCR readme

* Imporve OCR readme

* Improve OCR readme

* Improve OCR readme

* Imporve OCR readme

* Improve OCR readme

* Fix conflict

* Add readme for OCRResult

* Improve OCR readme

* Add OCRResult readme

* Improve OCR readme

* Improve OCR readme

* Add Model Quantization Demo

* Fix Model Quantization Readme

* Fix Model Quantization Readme

* Add the function to do PTQ quantization

* Improve quant tools readme

* Improve quant tool readme

* Improve quant tool readme

* Add PaddleInference-GPU for OCR Rec model

* Add QAT method to fastdeploy-quantization tool

* Remove examples/slim for now

* Move configs folder

* Add Quantization Support for Classification Model

* Imporve ways of importing preprocess

* Upload YOLO Benchmark on readme

* Upload YOLO Benchmark on readme

* Upload YOLO Benchmark on readme

* Improve Quantization configs and readme

* Add support for multi-inputs model
This commit is contained in:
yunyaoXYY
2022-10-08 15:45:28 +08:00
committed by GitHub
parent 8d47637541
commit 1efc0fa6b0
13 changed files with 736 additions and 0 deletions

View File

@@ -0,0 +1,49 @@
Global:
model_dir: ./MobileNetV1_ssld_infer/
format: 'paddle'
model_filename: inference.pdmodel
params_filename: inference.pdiparams
image_path: ./ImageNet_val_640
arch: MobileNetV1
input_list: ['input']
preprocess: cls_image_preprocess
Distillation:
alpha: 1.0
loss: l2
node:
- softmax_0.tmp_0
Quantization:
use_pact: true
activation_bits: 8
is_full_quantize: false
onnx_format: True
activation_quantize_type: moving_average_abs_max
weight_quantize_type: channel_wise_abs_max
not_quant_pattern:
- skip_quant
quantize_op_types:
- conv2d
- depthwise_conv2d
weight_bits: 8
TrainConfig:
train_iter: 5000
learning_rate:
type: CosineAnnealingDecay
learning_rate: 0.015
T_max: 8000
optimizer_builder:
optimizer:
type: Momentum
weight_decay: 0.00002
origin_metric: 0.70898
PTQ:
calibration_method: 'avg' # option: avg, abs_max, hist, KL, mse
skip_tensor_list: None

View File

@@ -0,0 +1,47 @@
Global:
model_dir: ./ResNet50_vd_infer/
format: 'paddle'
model_filename: inference.pdmodel
params_filename: inference.pdiparams
image_path: ./ImageNet_val_640
arch: ResNet50
input_list: ['input']
preprocess: cls_image_preprocess
Distillation:
alpha: 1.0
loss: l2
node:
- softmax_0.tmp_0
Quantization:
use_pact: true
activation_bits: 8
is_full_quantize: false
onnx_format: True
activation_quantize_type: moving_average_abs_max
weight_quantize_type: channel_wise_abs_max
not_quant_pattern:
- skip_quant
quantize_op_types:
- conv2d
- depthwise_conv2d
weight_bits: 8
TrainConfig:
train_iter: 5000
learning_rate:
type: CosineAnnealingDecay
learning_rate: 0.015
T_max: 8000
optimizer_builder:
optimizer:
type: Momentum
weight_decay: 0.00002
origin_metric: 0.7912
PTQ:
calibration_method: 'avg' # option: avg, abs_max, hist, KL, mse
skip_tensor_list: None

View File

@@ -0,0 +1,35 @@
Global:
model_dir: ./yolov5s.onnx
format: 'onnx'
model_filename: model.pdmodel
params_filename: model.pdiparams
image_path: ./COCO_val_320
arch: YOLOv5
input_list: ['x2paddle_images']
preprocess: yolo_image_preprocess
Distillation:
alpha: 1.0
loss: soft_label
Quantization:
onnx_format: true
use_pact: true
activation_quantize_type: 'moving_average_abs_max'
quantize_op_types:
- conv2d
- depthwise_conv2d
PTQ:
calibration_method: 'avg' # option: avg, abs_max, hist, KL, mse
skip_tensor_list: None
TrainConfig:
train_iter: 3000
learning_rate: 0.00001
optimizer_builder:
optimizer:
type: SGD
weight_decay: 4.0e-05
target_metric: 0.365

View File

@@ -0,0 +1,35 @@
Global:
model_dir: ./yolov6s.onnx
format: 'onnx'
model_filename: model.pdmodel
params_filename: model.pdiparams
image_path: ./COCO_val_320
arch: YOLOv6
input_list: ['x2paddle_image_arrays']
Distillation:
alpha: 1.0
loss: soft_label
Quantization:
onnx_format: true
activation_quantize_type: 'moving_average_abs_max'
quantize_op_types:
- conv2d
- depthwise_conv2d
PTQ:
calibration_method: 'avg' # option: avg, abs_max, hist, KL, mse
skip_tensor_list: ['conv2d_2.w_0', 'conv2d_15.w_0', 'conv2d_46.w_0', 'conv2d_11.w_0', 'conv2d_49.w_0']
TrainConfig:
train_iter: 8000
learning_rate:
type: CosineAnnealingDecay
learning_rate: 0.00003
T_max: 8000
optimizer_builder:
optimizer:
type: SGD
weight_decay: 0.00004

View File

@@ -0,0 +1,34 @@
Global:
model_dir: ./yolov7.onnx
format: 'onnx'
model_filename: model.pdmodel
params_filename: model.pdiparams
image_path: ./COCO_val_320
arch: YOLOv7
input_list: ['x2paddle_images']
Distillation:
alpha: 1.0
loss: soft_label
Quantization:
onnx_format: true
activation_quantize_type: 'moving_average_abs_max'
quantize_op_types:
- conv2d
- depthwise_conv2d
PTQ:
calibration_method: 'avg' # option: avg, abs_max, hist, KL, mse
skip_tensor_list: None
TrainConfig:
train_iter: 3000
learning_rate:
type: CosineAnnealingDecay
learning_rate: 0.00003
T_max: 8000
optimizer_builder:
optimizer:
type: SGD
weight_decay: 0.00004

View File

@@ -0,0 +1,48 @@
# FastDeploy 量化配置文件说明
FastDeploy 量化配置文件中,包含了全局配置,量化蒸馏训练配置,离线量化配置和训练配置.
用户除了直接使用FastDeploy提供在本目录的配置文件外可以按需求自行修改相关配置文件
## 实例解读
```
#全局信息
Global:
model_dir: ./yolov7-tiny.onnx #输入模型路径
format: 'onnx' #输入模型格式,选项为 onnx 或者 paddle
model_filename: model.pdmodel #paddle模型的模型文件名
params_filename: model.pdiparams #paddle模型的参数文件名
image_path: ./COCO_val_320 #PTQ所有的Calibration数据集或者量化训练所用的训练集
arch: YOLOv7 #模型系列
#量化蒸馏训练中的蒸馏参数设置
Distillation:
alpha: 1.0
loss: soft_label
#量化蒸馏训练中的量化参数设置
Quantization:
onnx_format: true
activation_quantize_type: 'moving_average_abs_max'
quantize_op_types:
- conv2d
- depthwise_conv2d
#离线量化参数配置
PTQ:
calibration_method: 'avg' #Calibraion算法可选为 avg, abs_max, hist, KL, mse
skip_tensor_list: None #不进行离线量化的tensor
#训练参数
TrainConfig:
train_iter: 3000
learning_rate:
type: CosineAnnealingDecay
learning_rate: 0.00003
T_max: 8000
optimizer_builder:
optimizer:
type: SGD
weight_decay: 0.00004
```

View File

View File

@@ -0,0 +1,150 @@
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import cv2
import os
import numpy as np
import paddle
def generate_scale(im, target_shape):
origin_shape = im.shape[:2]
im_size_min = np.min(origin_shape)
im_size_max = np.max(origin_shape)
target_size_min = np.min(target_shape)
target_size_max = np.max(target_shape)
im_scale = float(target_size_min) / float(im_size_min)
if np.round(im_scale * im_size_max) > target_size_max:
im_scale = float(target_size_max) / float(im_size_max)
im_scale_x = im_scale
im_scale_y = im_scale
return im_scale_y, im_scale_x
def yolo_image_preprocess(img, target_shape=[640, 640]):
# Resize image
im_scale_y, im_scale_x = generate_scale(img, target_shape)
img = cv2.resize(
img,
None,
None,
fx=im_scale_x,
fy=im_scale_y,
interpolation=cv2.INTER_LINEAR)
# Pad
im_h, im_w = img.shape[:2]
h, w = target_shape[:]
if h != im_h or w != im_w:
canvas = np.ones((h, w, 3), dtype=np.float32)
canvas *= np.array([114.0, 114.0, 114.0], dtype=np.float32)
canvas[0:im_h, 0:im_w, :] = img.astype(np.float32)
img = canvas
img = np.transpose(img / 255, [2, 0, 1])
return img.astype(np.float32)
def cls_resize_short(img, target_size):
img_h, img_w = img.shape[:2]
percent = float(target_size) / min(img_w, img_h)
w = int(round(img_w * percent))
h = int(round(img_h * percent))
return cv2.resize(img, (w, h), interpolation=cv2.INTER_LINEAR)
def crop_image(img, target_size, center):
height, width = img.shape[:2]
size = target_size
if center == True:
w_start = (width - size) // 2
h_start = (height - size) // 2
else:
w_start = np.random.randint(0, width - size + 1)
h_start = np.random.randint(0, height - size + 1)
w_end = w_start + size
h_end = h_start + size
return img[h_start:h_end, w_start:w_end, :]
def cls_image_preprocess(img):
# resize
img = cls_resize_short(img, target_size=256)
# crop
img = crop_image(img, target_size=224, center=True)
#ToCHWImage & Normalize
img = np.transpose(img / 255, [2, 0, 1])
img_mean = np.array([0.485, 0.456, 0.406]).reshape((3, 1, 1))
img_std = np.array([0.229, 0.224, 0.225]).reshape((3, 1, 1))
img -= img_mean
img /= img_std
return img.astype(np.float32)
def ppdet_resize_no_keepratio(img, target_shape=[640, 640]):
im_shape = img.shape
resize_h, resize_w = target_shape
im_scale_y = resize_h / im_shape[0]
im_scale_x = resize_w / im_shape[1]
scale_factor = np.asarray([im_scale_y, im_scale_x], dtype=np.float32)
return cv2.resize(
img, None, None, fx=im_scale_x, fy=im_scale_y,
interpolation=2), scale_factor
def ppdet_normliaze(img, is_scale=True):
mean = [0.485, 0.456, 0.406]
std = [0.229, 0.224, 0.225]
img = img.astype(np.float32, copy=False)
if is_scale:
scale = 1.0 / 255.0
img *= scale
mean = np.array(mean)[np.newaxis, np.newaxis, :]
std = np.array(std)[np.newaxis, np.newaxis, :]
img -= mean
img /= std
return img
def hwc_to_chw(img):
img = img.transpose((2, 0, 1))
return img
def ppdet_image_preprocess(img):
img, scale_factor = ppdet_resize_no_keepratio(img, target_shape=[640, 640])
img = np.transpose(img / 255, [2, 0, 1])
img_mean = np.array([0.485, 0.456, 0.406]).reshape((3, 1, 1))
img_std = np.array([0.229, 0.224, 0.225]).reshape((3, 1, 1))
img -= img_mean
img /= img_std
return img.astype(np.float32), scale_factor

View File

@@ -0,0 +1,155 @@
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import sys
import numpy as np
import time
import argparse
from tqdm import tqdm
import paddle
from paddleslim.common import load_config, load_onnx_model
from paddleslim.auto_compression import AutoCompression
from paddleslim.quant import quant_post_static
from fdquant.dataset import *
def argsparser():
parser = argparse.ArgumentParser(description=__doc__)
parser.add_argument(
'--config_path',
type=str,
default=None,
help="path of compression strategy config.",
required=True)
parser.add_argument(
'--method',
type=str,
default=None,
help="choose PTQ or QAT as quantization method",
required=True)
parser.add_argument(
'--save_dir',
type=str,
default='output',
help="directory to save compressed model.")
parser.add_argument(
'--devices',
type=str,
default='gpu',
help="which device used to compress.")
return parser
def reader_wrapper(reader, input_list=None):
def gen():
for data_list in reader:
in_dict = {}
for data in data_list:
for i, input_name in enumerate(input_list):
in_dict[input_name] = data[i]
yield in_dict
return gen
def main():
time_s = time.time()
paddle.enable_static()
parser = argsparser()
FLAGS = parser.parse_args()
assert FLAGS.devices in ['cpu', 'gpu', 'xpu', 'npu']
paddle.set_device(FLAGS.devices)
global global_config
all_config = load_config(FLAGS.config_path)
assert "Global" in all_config, f"Key 'Global' not found in config file. \n{all_config}"
global_config = all_config["Global"]
input_list = global_config['input_list']
assert os.path.exists(global_config[
'image_path']), "image_path does not exist!"
paddle.vision.image.set_image_backend('cv2')
# transform could be customized.
train_dataset = paddle.vision.datasets.ImageFolder(
global_config['image_path'],
transform=eval(global_config['preprocess']))
train_loader = paddle.io.DataLoader(
train_dataset,
batch_size=1,
shuffle=True,
drop_last=True,
num_workers=0)
train_loader = reader_wrapper(train_loader, input_list=input_list)
eval_func = None
# ACT compression
if FLAGS.method == 'QAT':
ac = AutoCompression(
model_dir=global_config['model_dir'],
model_filename=global_config['model_filename'],
params_filename=global_config['params_filename'],
train_dataloader=train_loader,
save_dir=FLAGS.save_dir,
config=all_config,
eval_callback=eval_func)
ac.compress()
# PTQ compression
if FLAGS.method == 'PTQ':
# Read PTQ config
assert "PTQ" in all_config, f"Key 'PTQ' not found in config file. \n{all_config}"
ptq_config = all_config["PTQ"]
# Inititalize the executor
place = paddle.CUDAPlace(
0) if FLAGS.devices == 'gpu' else paddle.CPUPlace()
exe = paddle.static.Executor(place)
# Read ONNX or PADDLE format model
if global_config['format'] == 'onnx':
load_onnx_model(global_config["model_dir"])
inference_model_path = global_config["model_dir"].rstrip().rstrip(
'.onnx') + '_infer'
else:
inference_model_path = global_config["model_dir"].rstrip('/')
quant_post_static(
executor=exe,
model_dir=inference_model_path,
quantize_model_path=FLAGS.save_dir,
data_loader=train_loader,
model_filename=global_config["model_filename"],
params_filename=global_config["params_filename"],
batch_size=32,
batch_nums=10,
algo=ptq_config['calibration_method'],
hist_percent=0.999,
is_full_quantize=False,
bias_correction=False,
onnx_format=True,
skip_tensor_list=ptq_config['skip_tensor_list']
if 'skip_tensor_list' in ptq_config else None)
time_total = time.time() - time_s
print("Finish Compression, total time used is : ", time_total, "seconds.")
if __name__ == '__main__':
main()

View File

@@ -0,0 +1,120 @@
# FastDeploy 一键模型量化
FastDeploy 给用户提供了一键量化功能, 支持离线量化和量化蒸馏训练. 本文档已Yolov5s为例, 用户可参考如何安装并执行FastDeploy的一键量化功能.
## 1.安装
### 环境依赖
1.用户参考PaddlePaddle官网, 安装develop版本
```
https://www.paddlepaddle.org.cn/install/quick?docurl=/documentation/docs/zh/develop/install/pip/linux-pip.html
```
2.安装paddleslim-develop版本
```bash
git clone https://github.com/PaddlePaddle/PaddleSlim.git & cd PaddleSlim
python setup.py install
```
### FastDeploy-Quantization 安装方式
用户在当前目录下,运行如下命令:
```
python setup.py install
```
## 2.使用方式
### 一键离线量化示例
#### 离线量化
##### 1. 准备模型和Calibration数据集
用户需要自行准备待量化模型与Calibration数据集.
本例中用户可执行以下命令, 下载待量化的yolov5s.onnx模型和我们为用户准备的Calibration数据集示例.
```shell
# 下载yolov5.onnx
wget https://bj.bcebos.com/paddlehub/fastdeploy/yolov5s.onnx
# 下载数据集, 此Calibration数据集为COCO val2017中的前320张图片
wget https://bj.bcebos.com/paddlehub/fastdeploy/COCO_val_320.tar.gz
tar -xvf COCO_val_320.tar.gz
```
##### 2.使用fastdeploy_quant命令执行一键模型量化:
```shell
fastdeploy_quant --config_path=./configs/detection/yolov5s_quant.yaml --method='PTQ' --save_dir='./yolov5s_ptq_model/'
```
##### 3.参数说明
| 参数 | 作用 |
| -------------------- | ------------------------------------------------------------ |
| --config_path | 一键量化所需要的量化配置文件.[详解](./fdquant/configs/readme.md) |
| --method | 量化方式选择, 离线量化选PTQ量化蒸馏训练选QAT |
| --save_dir | 产出的量化后模型路径, 该模型可直接在FastDeploy部署 |
注意目前fastdeploy_quant暂时只支持YOLOv5,YOLOv6和YOLOv7模型的量化
#### 量化蒸馏训练
##### 1.准备待量化模型和训练数据集
FastDeploy目前的量化蒸馏训练只支持无标注图片训练训练过程中不支持评估模型精度.
数据集为真实预测场景下的图片,图片数量依据数据集大小来定,尽量覆盖所有部署场景. 此例中我们为用户准备了COCO2017验证集中的前320张图片.
```shell
# 下载yolov5.onnx
wget https://bj.bcebos.com/paddlehub/fastdeploy/yolov5s.onnx
# 下载数据集, 此Calibration数据集为COCO2017验证集中的前320张图片
wget https://bj.bcebos.com/paddlehub/fastdeploy/COCO_val_320.tar.gz
tar -xvf COCO_val_320.tar.gz
```
##### 2.使用fastdeploy_quant命令执行一键模型量化:
```shell
export CUDA_VISIBLE_DEVICES=0
fastdeploy_quant --config_path=./configs/detection/yolov5s_quant.yaml --method='QAT' --save_dir='./yolov5s_qat_model/'
```
##### 3.参数说明
| 参数 | 作用 |
| -------------------- | ------------------------------------------------------------ |
| --config_path | 一键量化所需要的量化配置文件.[详解](./fdquant/configs/readme.md) |
| --method | 量化方式选择, 离线量化选PTQ量化蒸馏训练选QAT |
| --save_dir | 产出的量化后模型路径, 该模型可直接在FastDeploy部署 |
注意目前fastdeploy_quant暂时只支持YOLOv5,YOLOv6和YOLOv7模型的量化
## 3. FastDeploy 部署量化模型
用户在获得量化模型之后只需要简单地传入量化后的模型路径及相应参数即可以使用FastDeploy进行部署.
具体请用户参考示例文档:
- [YOLOv5s 量化模型Python部署](../examples/slim/yolov5s/python/)
- [YOLOv5s 量化模型C++部署](../examples/slim/yolov5s/cpp/)
- [YOLOv6s 量化模型Python部署](../examples/slim/yolov6s/python/)
- [YOLOv6s 量化模型C++部署](../examples/slim/yolov6s/cpp/)
- [YOLOv7 量化模型Python部署](../examples/slim/yolov7/python/)
- [YOLOv7 量化模型C++部署](../examples/slim/yolov7/cpp/)
## 4.Benchmark
下表为模型量化前后在FastDeploy部署的端到端推理性能.
- 测试图片为COCO val2017中的图片.
- 推理时延为端到端推理(包含前后处理)的平均时延, 单位是毫秒.
- CPU为Intel(R) Xeon(R) Gold 6271C, GPU为Tesla T4, TensorRT版本8.4.15, 所有测试中固定CPU线程数为1.
| 模型 |推理后端 |部署硬件 | FP32推理时延 | INT8推理时延 | 加速比 | FP32 mAP | INT8 mAP |
| ------------------- | -----------------|-----------| -------- |-------- |-------- | --------- |-------- |
| YOLOv5s | TensorRT | GPU | 14.13 | 11.22 | 1.26 | 37.6 | 36.6 |
| YOLOv5s | ONNX Runtime | CPU | 183.68 | 100.39 | 1.83 | 37.6 | 33.1 |
| YOLOv5s | Paddle Inference | CPU | 226.36 | 152.27 | 1.48 |37.6 | 36.8 |
| YOLOv6s | TensorRT | GPU | 12.89 | 8.92 | 1.45 | 42.5 | 40.6|
| YOLOv6s | ONNX Runtime | CPU | 345.85 | 131.81 | 2.60 |42.5| 36.1|
| YOLOv6s | Paddle Inference | CPU | 366.41 | 131.70 | 2.78 |42.5| 41.2|
| YOLOv7 | TensorRT | GPU | 30.43 | 15.40 | 1.98 | 51.1| 50.8|
| YOLOv7 | ONNX Runtime | CPU | 971.27 | 471.88 | 2.06 | 51.1 | 42.5|
| YOLOv7 | Paddle Inference | CPU | 1015.70 | 562.41 | 1.82 |51.1 | 46.3|

View File

@@ -0,0 +1 @@
paddleslim

View File

@@ -0,0 +1,25 @@
import setuptools
import fdquant
long_description = "FDQuant is a toolkit for model quantization of FastDeploy.\n\n"
long_description += "Usage: fastdeploy_quant --config_path=./yolov7_tiny_qat_dis.yaml --method='QAT' --save_dir='../v7_qat_outmodel/' \n"
with open("requirements.txt") as fin:
REQUIRED_PACKAGES = fin.read()
setuptools.setup(
name="fastdeploy-quantization", # name of package
description="A toolkit for model quantization of FastDeploy.",
long_description=long_description,
long_description_content_type="text/plain",
packages=setuptools.find_packages(),
install_requires=REQUIRED_PACKAGES,
classifiers=[
"Programming Language :: Python :: 3",
"License :: OSI Approved :: Apache Software License",
"Operating System :: OS Independent",
],
license='Apache 2.0',
entry_points={
'console_scripts': ['fastdeploy_quant=fdquant.fdquant:main', ]
})