support w4afp8 eplb (#3680)

This commit is contained in:
xiaoxiaohehe001
2025-08-29 14:43:06 +08:00
committed by GitHub
parent 68f87240da
commit 1bf4fc7f36

View File

@@ -661,7 +661,7 @@ class CutlassW4AFP8MoEMethod(CutlassMoEMethod):
self.moe_quant_type = "w4afp8"
self.pack_num = 2
def process_prequanted_weights(self, layer: nn.Layer, state_dict):
def process_prequanted_weights(self, layer: nn.Layer, state_dict, is_rearrange: bool = False):
"""
Paddle cutlass process prequanted weights.
"""
@@ -677,6 +677,7 @@ class CutlassW4AFP8MoEMethod(CutlassMoEMethod):
state_dict,
up_gate_proj_expert_weight_key,
down_proj_expert_weight_key,
is_rearrange,
)
)
@@ -686,22 +687,62 @@ class CutlassW4AFP8MoEMethod(CutlassMoEMethod):
up_gate_proj_in_scale = []
down_proj_in_scale = []
if isinstance(state_dict, list):
state_dict = dict(state_dict)
if layer.ep_size > 1:
for expert_idx in ep_rank_to_expert_id_list:
scale_tensor = get_tensor(state_dict[up_gate_proj_expert_in_scale_key.format(expert_idx)])
scale_tensor = get_tensor(
(
state_dict[up_gate_proj_expert_in_scale_key.format(expert_idx)]
if up_gate_proj_expert_in_scale_key.format(expert_idx) in state_dict
else up_gate_proj_expert_in_scale_key.format(expert_idx)
),
layer.fd_config.model_config.model,
)
up_gate_proj_in_scale_all_experts.append(scale_tensor)
for expert_idx in logical_expert_ids:
up_gate_proj_weight_scale.append(
get_tensor(state_dict.pop(up_gate_proj_expert_weight_scale_key.format(expert_idx)))
get_tensor(
(
state_dict.pop(up_gate_proj_expert_weight_scale_key.format(expert_idx))
if up_gate_proj_expert_weight_scale_key.format(expert_idx) in state_dict
else up_gate_proj_expert_weight_scale_key.format(expert_idx)
),
layer.fd_config.model_config.model,
)
)
down_proj_weight_scale.append(
get_tensor(state_dict.pop(down_proj_expert_weight_scale_key.format(expert_idx)))
get_tensor(
(
state_dict.pop(down_proj_expert_weight_scale_key.format(expert_idx))
if down_proj_expert_weight_scale_key.format(expert_idx) in state_dict
else down_proj_expert_weight_scale_key.format(expert_idx)
),
layer.fd_config.model_config.model,
)
)
up_gate_proj_in_scale.append(
get_tensor(state_dict.pop(up_gate_proj_expert_in_scale_key.format(expert_idx)))
get_tensor(
(
state_dict.pop(up_gate_proj_expert_in_scale_key.format(expert_idx))
if up_gate_proj_expert_in_scale_key.format(expert_idx) in state_dict
else up_gate_proj_expert_in_scale_key.format(expert_idx)
),
layer.fd_config.model_config.model,
)
)
down_proj_in_scale.append(
get_tensor(
(
state_dict.pop(down_proj_expert_in_scale_key.format(expert_idx))
if down_proj_expert_in_scale_key.format(expert_idx) in state_dict
else down_proj_expert_in_scale_key.format(expert_idx)
),
layer.fd_config.model_config.model,
)
)
down_proj_in_scale.append(get_tensor(state_dict.pop(down_proj_expert_in_scale_key.format(expert_idx))))
up_gate_proj_weight = paddle.stack(up_gate_proj_weights, axis=0)
down_proj_weight = paddle.stack(down_proj_weights, axis=0)
@@ -763,7 +804,9 @@ class CutlassW4AFP8MoEMethod(CutlassMoEMethod):
"""
Paddle cutlass load weight process.
"""
up_gate_proj_weights, down_proj_weights = layer.extract_moe_ffn_weights(state_dict)
up_gate_proj_weights, down_proj_weights, logical_expert_ids, ep_rank_to_expert_id_list = (
layer.extract_moe_ffn_weights(state_dict)
)
self.check(layer, up_gate_proj_weights, down_proj_weights)
for idx, weight_tensor in enumerate([up_gate_proj_weights, down_proj_weights]):
weight_name = self.added_weight_attrs[idx]
@@ -774,7 +817,9 @@ class CutlassW4AFP8MoEMethod(CutlassMoEMethod):
quanted_weight = paddle.stack(weight_list, axis=0)
getattr(layer, weight_name).set_value(quanted_weight)
self.load_w4afp8_scale_weights(layer, layer.weight_key_map, state_dict)
self.load_w4afp8_scale_weights(
layer, layer.weight_key_map, state_dict, logical_expert_ids, ep_rank_to_expert_id_list
)
def create_w4afp8_scale_weights(self, layer: nn.Layer, weight_key_map: dict):
"""
@@ -828,7 +873,14 @@ class CutlassW4AFP8MoEMethod(CutlassMoEMethod):
),
)
def load_w4afp8_scale_weights(self, layer: nn.Layer, weight_key_map: dict, state_dict: dict):
def load_w4afp8_scale_weights(
self,
layer: nn.Layer,
weight_key_map: dict,
state_dict: dict,
logical_expert_ids: paddle.Tensor,
ep_rank_to_expert_id_list: list,
):
"""
Get w4afp8 weights from state dict and process them.
Args:
@@ -837,8 +889,15 @@ class CutlassW4AFP8MoEMethod(CutlassMoEMethod):
state_dict (dict): The state dict.
"""
def _extract_scale_tensor(state_dict, key_template, expert_idx):
return get_tensor(state_dict.pop(key_template.format(expert_idx)))
def _extract_scale_tensor(layer: nn.Layer, state_dict, key_template, expert_idx):
return get_tensor(
(
state_dict.pop(key_template.format(expert_idx))
if key_template.format(expert_idx) in state_dict
else key_template.format(expert_idx)
),
layer.fd_config.model_config.model,
)
def _process_in_scale(name: str, in_scales: list[paddle.Tensor]):
processed_in_scale = 1 / paddle.concat(in_scales)
@@ -881,17 +940,23 @@ class CutlassW4AFP8MoEMethod(CutlassMoEMethod):
# 2. Extract scale tensor from state dict
if layer.ep_size > 1:
for expert_idx in range(layer.num_experts):
scale_tensor = get_tensor(state_dict[scale_key_map["up_gate_proj_in_scale"].format(expert_idx)])
for expert_idx in ep_rank_to_expert_id_list:
scale_tensor = get_tensor(
(
state_dict[scale_key_map["up_gate_proj_in_scale"].format(expert_idx)]
if scale_key_map["up_gate_proj_in_scale"].format(expert_idx) in state_dict
else scale_key_map["up_gate_proj_in_scale"].format(expert_idx)
),
layer.fd_config.model_config.model,
)
up_gate_proj_in_scales_all_experts.append(1 / scale_tensor)
getattr(layer, "up_gate_proj_in_scale_all_experts").set_value(
paddle.concat(up_gate_proj_in_scales_all_experts)
)
for local_expert_idx in range(layer.num_local_experts):
expert_idx = local_expert_idx + layer.expert_id_offset
for expert_idx in logical_expert_ids:
for name, scale_key_template in scale_key_map.items():
scale_tensor = _extract_scale_tensor(state_dict, scale_key_template, expert_idx)
scale_tensor = _extract_scale_tensor(layer, state_dict, scale_key_template, expert_idx)
scale_weight_map[name].append(scale_tensor)
# 3. Process scale tensor and set to layer