Fix noaux_tc cuda Error 700 in CUDAGraph (#4174)
Some checks failed
CE Compile Job / ce_job_pre_check (push) Has been cancelled
CE Compile Job / print_ce_job_pre_check_outputs (push) Has been cancelled
CE Compile Job / FD-Clone-Linux (push) Has been cancelled
CE Compile Job / Show Code Archive Output (push) Has been cancelled
CE Compile Job / BUILD_SM8090 (push) Has been cancelled
CE Compile Job / BUILD_SM8689 (push) Has been cancelled
CE Compile Job / CE_UPLOAD (push) Has been cancelled
Deploy GitHub Pages / deploy (push) Has been cancelled
Publish Job / publish_pre_check (push) Has been cancelled
Publish Job / print_publish_pre_check_outputs (push) Has been cancelled
Publish Job / FD-Clone-Linux (push) Has been cancelled
Publish Job / Show Code Archive Output (push) Has been cancelled
Publish Job / BUILD_SM8090 (push) Has been cancelled
Publish Job / BUILD_SM8689 (push) Has been cancelled
Publish Job / PADDLE_PYPI_UPLOAD_8090 (push) Has been cancelled
Publish Job / PADDLE_PYPI_UPLOAD_8689 (push) Has been cancelled
Publish Job / Run FastDeploy Unit Tests and Coverage (push) Has been cancelled
Publish Job / Run FastDeploy LogProb Tests (push) Has been cancelled
Publish Job / Extracted partial CE model tasks to run in CI. (push) Has been cancelled
Publish Job / Run Base Tests (push) Has been cancelled
Publish Job / Run Accuracy Tests (push) Has been cancelled
Publish Job / Run Stable Tests (push) Has been cancelled
CI Images Build / FD-Clone-Linux (push) Has been cancelled
CI Images Build / Show Code Archive Output (push) Has been cancelled
CI Images Build / CI Images Build (push) Has been cancelled
CI Images Build / BUILD_SM8090 (push) Has been cancelled
CI Images Build / Run FastDeploy Unit Tests and Coverage (push) Has been cancelled
CI Images Build / Run FastDeploy LogProb Tests (push) Has been cancelled
CI Images Build / Extracted partial CE model tasks to run in CI. (push) Has been cancelled
CI Images Build / Run Base Tests (push) Has been cancelled
CI Images Build / Run Accuracy Tests (push) Has been cancelled
CI Images Build / Run Stable Tests (push) Has been cancelled
CI Images Build / Publish Docker Images Pre Check (push) Has been cancelled

This commit is contained in:
chen
2025-09-23 18:41:33 +08:00
committed by GitHub
parent c96a535a5d
commit 1a6283424e
12 changed files with 334 additions and 148 deletions

View File

@@ -571,6 +571,7 @@ std::vector<paddle::Tensor> NoauxTc(
int n_group,
int topk_group,
int topk,
bool renormalize,
float routed_scaling_factor);
#ifdef ENABLE_FP8

View File

@@ -26,6 +26,7 @@ std::vector<paddle::Tensor> NoauxTc(paddle::Tensor& scores,
int n_group,
int topk_group,
int topk,
bool renormalize,
float routed_scaling_factor) {
auto input_shape = scores_with_bias.shape();
PD_CHECK(input_shape.size() == 2);
@@ -48,6 +49,7 @@ std::vector<paddle::Tensor> NoauxTc(paddle::Tensor& scores,
n_group,
topk_group,
topk,
renormalize,
routed_scaling_factor,
stream);
@@ -76,6 +78,7 @@ PD_BUILD_STATIC_OP(noaux_tc)
.Attrs({"n_group: int",
"topk_group: int",
"topk:int",
"renormalize: bool",
"routed_scaling_factor: float"})
.SetKernelFn(PD_KERNEL(NoauxTc))
.SetInferShapeFn(PD_INFER_SHAPE(NoauxTcInferShape))

View File

@@ -25,6 +25,23 @@ constexpr unsigned FULL_WARP_MASK = 0xffffffff;
constexpr int32_t BLOCK_SIZE = 512;
constexpr int32_t NUM_WARPS_PER_BLOCK = BLOCK_SIZE / WARP_SIZE;
template <typename T_OUT, typename T_IN>
__device__ inline T_OUT cuda_cast(T_IN val) {
return val;
}
template <>
__device__ inline float cuda_cast<float, __nv_bfloat16>(__nv_bfloat16 val) {
return __bfloat162float(val);
}
template <typename T>
__device__ inline T neg_inf() {
// cuda::std::numeric_limits<T>::infinity() returns `0` for [T=bf16 or fp16]
// so we need to cast from fp32
return cuda_cast<T, float>(-cuda::std::numeric_limits<float>::infinity());
}
namespace warp_topk {
template <int size, typename T>
@@ -41,10 +58,21 @@ constexpr __host__ __device__ bool isPowerOf2(T v) {
}
template <bool greater, typename T>
__device__ bool is_better_than(T val, T baseline) {
__forceinline__ __device__ bool is_better_than(T val, T baseline) {
return (val > baseline && greater) || (val < baseline && !greater);
}
template <bool greater, typename T, typename idxT>
__forceinline__ __device__ bool is_better_than(T val, T baseline, idxT index,
idxT baseline_index) {
bool res = (val > baseline && greater) || (val < baseline && !greater);
if (val == baseline) {
res = (index < baseline_index && greater) ||
(index < baseline_index && !greater);
}
return res;
}
template <typename T, typename idxT>
int calc_smem_size_for_block_wide(int num_of_warp, int64_t k) {
int64_t cache_topk = (sizeof(T) + sizeof(idxT)) * num_of_warp * k;
@@ -53,7 +81,8 @@ int calc_smem_size_for_block_wide(int num_of_warp, int64_t k) {
round_up_to_multiple_of<256>(n * sizeof(T)) + n * sizeof(idxT));
}
template <int size, bool ascending, typename T, typename idxT>
template <int size, bool ascending, bool reverse, typename T, typename idxT,
bool is_stable>
struct BitonicMerge {
// input should be a bitonic sequence, and sort it to be a monotonic sequence
__device__ static void merge(T* __restrict__ val_arr,
@@ -67,7 +96,15 @@ struct BitonicMerge {
int const other_i = i + stride;
T& val = val_arr[i];
T& other_val = val_arr[other_i];
if ((val > other_val && ascending) || (val < other_val && !ascending)) {
bool is_better;
if constexpr (is_stable) {
is_better = is_better_than<ascending>(val, other_val, idx_arr[i],
idx_arr[other_i]);
} else {
is_better = is_better_than<ascending>(val, other_val);
}
if (is_better) {
T tmp = val;
val = other_val;
other_val = tmp;
@@ -78,13 +115,14 @@ struct BitonicMerge {
}
}
BitonicMerge<size / 2, ascending, T, idxT>::merge(val_arr, idx_arr);
BitonicMerge<size / 2, ascending, T, idxT>::merge(val_arr + arr_len / 2,
idx_arr + arr_len / 2);
BitonicMerge<size / 2, ascending, reverse, T, idxT, is_stable>::merge(
val_arr, idx_arr);
BitonicMerge<size / 2, ascending, reverse, T, idxT, is_stable>::merge(
val_arr + arr_len / 2, idx_arr + arr_len / 2);
}
};
template <int size, bool ascending, typename T, typename idxT>
template <int size, bool ascending, typename T, typename idxT, bool is_stable>
struct BitonicSort {
__device__ static void sort(T* __restrict__ val_arr,
idxT* __restrict__ idx_arr) {
@@ -92,15 +130,16 @@ struct BitonicSort {
static_assert(size >= 2 * WARP_SIZE);
constexpr int arr_len = size / WARP_SIZE;
BitonicSort<size / 2, true, T, idxT>::sort(val_arr, idx_arr);
BitonicSort<size / 2, false, T, idxT>::sort(val_arr + arr_len / 2,
idx_arr + arr_len / 2);
BitonicMerge<size, ascending, T, idxT>::merge(val_arr, idx_arr);
BitonicSort<size / 2, true, T, idxT, is_stable>::sort(val_arr, idx_arr);
BitonicSort<size / 2, false, T, idxT, is_stable>::sort(
val_arr + arr_len / 2, idx_arr + arr_len / 2);
BitonicMerge<size, ascending, ascending, T, idxT, is_stable>::merge(
val_arr, idx_arr);
}
};
template <bool ascending, typename T, typename idxT>
struct BitonicSort<32, ascending, T, idxT> {
template <bool ascending, typename T, typename idxT, bool is_stable>
struct BitonicSort<32, ascending, T, idxT, is_stable> {
__device__ static void sort(T* __restrict__ val_arr,
idxT* __restrict__ idx_arr) {
int const lane = threadIdx.x % WARP_SIZE;
@@ -114,19 +153,37 @@ struct BitonicSort<32, ascending, T, idxT> {
T other = __shfl_xor_sync(FULL_WARP_MASK, *val_arr, stride);
idxT other_idx = __shfl_xor_sync(FULL_WARP_MASK, *idx_arr, stride);
if (*val_arr != other && (*val_arr > other) != (reverse != is_second)) {
bool is_better;
if constexpr (is_stable) {
if constexpr (ascending) {
is_better = ((*val_arr > other) ||
((*val_arr == other) && (*idx_arr < other_idx))) !=
(reverse != is_second);
} else {
is_better = ((*val_arr > other) ||
((*val_arr == other) && (*idx_arr > other_idx))) !=
(reverse != is_second);
}
} else {
is_better = (*val_arr != other &&
(*val_arr > other) != (reverse != is_second));
}
if (is_better) {
*val_arr = other;
*idx_arr = other_idx;
}
}
}
BitonicMerge<32, ascending, T, idxT>::merge(val_arr, idx_arr);
BitonicMerge<32, ascending, ascending, T, idxT, is_stable>::merge(val_arr,
idx_arr);
}
};
template <bool ascending, typename T, typename idxT>
struct BitonicMerge<32, ascending, T, idxT> {
template <bool ascending, bool reverse, typename T, typename idxT,
bool is_stable>
struct BitonicMerge<32, ascending, reverse, T, idxT, is_stable> {
__device__ static void merge(T* __restrict__ val_arr,
idxT* __restrict__ idx_arr) {
int const lane = threadIdx.x % WARP_SIZE;
@@ -136,7 +193,24 @@ struct BitonicMerge<32, ascending, T, idxT> {
T other = __shfl_xor_sync(FULL_WARP_MASK, val, stride);
idxT& idx = *idx_arr;
idxT other_idx = __shfl_xor_sync(FULL_WARP_MASK, idx, stride);
if (val != other && ((val > other) == (ascending != is_second))) {
bool is_better;
if constexpr (is_stable) {
if constexpr (ascending) {
is_better = ((*val_arr > other) ||
((*val_arr == other) && (*idx_arr < other_idx))) ==
(reverse != is_second); // for min
} else {
is_better = ((*val_arr > other) ||
((*val_arr == other) && (*idx_arr > other_idx))) ==
(reverse != is_second); // for max
}
} else {
is_better =
(val != other && ((val > other) == (ascending != is_second)));
}
if (is_better) {
val = other;
idx = other_idx;
}
@@ -144,7 +218,7 @@ struct BitonicMerge<32, ascending, T, idxT> {
}
};
template <int capacity, bool greater, typename T, typename idxT>
template <int capacity, bool greater, typename T, typename idxT, bool is_stable>
class WarpSort {
public:
__device__ WarpSort(idxT k, T dummy)
@@ -153,25 +227,33 @@ public:
for (int i = 0; i < max_arr_len_; ++i) {
val_arr_[i] = dummy_;
idx_arr_[i] = 0;
}
}
// load and merge k sorted values
__device__ void load_sorted(T const* __restrict__ in,
idxT const* __restrict__ in_idx,
idxT start) {
idxT const* __restrict__ in_idx, idxT start) {
idxT idx = start + WARP_SIZE - 1 - lane_;
for (int i = max_arr_len_ - 1; i >= 0; --i, idx += WARP_SIZE) {
if (idx < start + k_) {
T t = in[idx];
if (is_better_than<greater>(t, val_arr_[i])) {
bool is_better;
if constexpr (is_stable) {
is_better =
is_better_than<greater>(t, val_arr_[i], in_idx[idx], idx_arr_[i]);
} else {
is_better = is_better_than<greater>(t, val_arr_[i]);
}
if (is_better) {
val_arr_[i] = t;
idx_arr_[i] = in_idx[idx];
}
}
}
BitonicMerge<capacity, !greater, T, idxT>::merge(val_arr_, idx_arr_);
BitonicMerge<capacity, greater, !greater, T, idxT, is_stable>::merge(
val_arr_, idx_arr_);
}
__device__ void dump(T* __restrict__ out, idxT* __restrict__ out_idx) const {
@@ -205,11 +287,11 @@ protected:
}; // end class WarpSort
template <int capacity, bool greater, typename T, typename idxT>
class WarpSelect : public WarpSort<capacity, greater, T, idxT> {
template <int capacity, bool greater, typename T, typename idxT, bool is_stable>
class WarpSelect : public WarpSort<capacity, greater, T, idxT, is_stable> {
public:
__device__ WarpSelect(idxT k, T dummy)
: WarpSort<capacity, greater, T, idxT>(k, dummy),
: WarpSort<capacity, greater, T, idxT, is_stable>(k, dummy),
k_th_(dummy),
k_th_lane_((k - 1) % WARP_SIZE) {
extern __shared__ char smem_buf[]; // extern __shared__ T smem_buf[];
@@ -234,7 +316,13 @@ public:
}
__device__ void add(T val, idxT idx) {
bool do_add = is_better_than<greater>(val, k_th_);
bool do_add;
if constexpr (is_stable) {
do_add = is_better_than<greater>(val, k_th_, idx, k_th_idx_);
} else {
do_add = is_better_than<greater>(val, k_th_);
}
uint32_t mask = __ballot_sync(FULL_WARP_MASK, do_add);
if (mask == 0) {
return;
@@ -274,34 +362,49 @@ public:
private:
__device__ void set_k_th_() {
k_th_ = __shfl_sync(FULL_WARP_MASK, val_arr_[max_arr_len_ - 1], k_th_lane_);
if constexpr (is_stable) {
k_th_idx_ =
__shfl_sync(FULL_WARP_MASK, idx_arr_[max_arr_len_ - 1], k_th_lane_);
}
}
__device__ void merge_buf_(T val, idxT idx) {
BitonicSort<WARP_SIZE, greater, T, idxT>::sort(&val, &idx);
BitonicSort<WARP_SIZE, greater, T, idxT, is_stable>::sort(&val, &idx);
T& old = val_arr_[max_arr_len_ - 1];
if (is_better_than<greater>(val, old)) {
bool is_better;
if constexpr (is_stable) {
is_better =
is_better_than<greater>(val, old, idx, idx_arr_[max_arr_len_ - 1]);
} else {
is_better = is_better_than<greater>(val, old);
}
if (is_better) {
old = val;
idx_arr_[max_arr_len_ - 1] = idx;
}
BitonicMerge<capacity, !greater, T, idxT>::merge(val_arr_, idx_arr_);
BitonicMerge<capacity, greater, !greater, T, idxT, is_stable>::merge(
val_arr_, idx_arr_);
set_k_th_();
}
using WarpSort<capacity, greater, T, idxT>::max_arr_len_;
using WarpSort<capacity, greater, T, idxT>::val_arr_;
using WarpSort<capacity, greater, T, idxT>::idx_arr_;
using WarpSort<capacity, greater, T, idxT>::lane_;
using WarpSort<capacity, greater, T, idxT>::k_;
using WarpSort<capacity, greater, T, idxT>::dummy_;
using WarpSort<capacity, greater, T, idxT, is_stable>::max_arr_len_;
using WarpSort<capacity, greater, T, idxT, is_stable>::val_arr_;
using WarpSort<capacity, greater, T, idxT, is_stable>::idx_arr_;
using WarpSort<capacity, greater, T, idxT, is_stable>::lane_;
using WarpSort<capacity, greater, T, idxT, is_stable>::k_;
using WarpSort<capacity, greater, T, idxT, is_stable>::dummy_;
T* val_smem_;
idxT* idx_smem_;
int smem_buf_len_ = 0;
T k_th_;
idxT k_th_idx_;
int const k_th_lane_;
}; // end class WarpSelect
} // namespace warp_topk
@@ -313,8 +416,8 @@ __device__ void topk_with_k2(T* output,
int32_t const lane_id,
int const num_experts_per_group) {
// Get the top2 per thread
T largest = cuda::std::numeric_limits<T>::min();
T second_largest = cuda::std::numeric_limits<T>::min();
T largest = neg_inf<T>();
T second_largest = neg_inf<T>();
if (num_experts_per_group > WARP_SIZE) {
for (int i = lane_id; i < num_experts_per_group; i += WARP_SIZE) {
@@ -368,8 +471,14 @@ __global__ void topk_with_k2_kernel(T* output,
cg::thread_block block = cg::this_thread_block();
cg::thread_block_tile<32> tile = cg::tiled_partition<32>(block);
#if (defined(__CUDA_ARCH__) && (__CUDA_ARCH__ >= 900))
asm volatile("griddepcontrol.wait;");
#endif
topk_with_k2(output, input, tile, lane_id, num_experts_per_group);
}
#if (defined(__CUDA_ARCH__) && (__CUDA_ARCH__ >= 900))
asm volatile("griddepcontrol.launch_dependents;");
#endif
}
template <typename T, typename IdxT>
@@ -385,6 +494,7 @@ __global__ void group_idx_and_topk_idx_kernel(
int64_t const topk,
int64_t const num_experts,
int64_t const num_experts_per_group,
bool const renormalize,
double routed_scaling_factor) {
int32_t warp_id = threadIdx.x / WARP_SIZE;
int32_t lane_id = threadIdx.x % WARP_SIZE;
@@ -403,19 +513,29 @@ __global__ void group_idx_and_topk_idx_kernel(
extern __shared__ char smem_buf[]; // NOTE: reuse the shared memory here to
// store the target topk idx
int32_t* s_topk_idx = reinterpret_cast<int32_t*>(smem_buf) + warp_id * topk;
int32_t* s_topk_idx = reinterpret_cast<int32_t*>(smem_buf);
T* s_topk_value =
reinterpret_cast<T*>(s_topk_idx + NUM_WARPS_PER_BLOCK * topk) +
warp_id * topk;
s_topk_idx += warp_id * topk;
T value = cuda::std::numeric_limits<T>::min();
T topk_group_value = cuda::std::numeric_limits<T>::min();
T value = neg_inf<T>();
T topk_group_value = neg_inf<T>();
int32_t num_equalto_topkth_group;
if ((n_group > topk_group) && (case_id < num_tokens)) {
#if (defined(__CUDA_ARCH__) && (__CUDA_ARCH__ >= 900))
asm volatile("griddepcontrol.wait;"); // I think all prolog can be put before
// acqbulk because it's ptr arithmetic
#endif
if (case_id < num_tokens) {
// calculate group_idx
int32_t target_num_min = WARP_SIZE - n_group + topk_group;
if (lane_id < n_group) {
if (lane_id < n_group &&
(isfinite(cuda_cast<float, T>(
group_scores[lane_id])))) // The check is necessary to avoid
// abnormal input
{
value = group_scores[lane_id];
}
@@ -426,22 +546,23 @@ __global__ void group_idx_and_topk_idx_kernel(
__syncwarp(); // Ensure all threads have valid data before reduction
topk_group_value = cg::reduce(tile, value, cg::greater<T>());
if (value == topk_group_value) {
value = cuda::std::numeric_limits<T>::min();
value = neg_inf<T>();
}
pre_count_equal_to_top_value = count_equal_to_top_value;
count_equal_to_top_value = __popc(__ballot_sync(
FULL_WARP_MASK, (value == cuda::std::numeric_limits<T>::min())));
FULL_WARP_MASK, (value == neg_inf<T>())));
}
num_equalto_topkth_group = target_num_min - pre_count_equal_to_top_value;
}
__syncthreads();
warp_topk::WarpSelect</*capability*/ WARP_SIZE, /*greater*/ true, T, int32_t>
queue((int32_t)topk, cuda::std::numeric_limits<T>::min());
warp_topk::WarpSelect</*capability*/ WARP_SIZE, /*greater*/ true, T, int32_t,
/* is_stable */ true>
queue((int32_t)topk, neg_inf<T>());
int count_equalto_topkth_group = 0;
bool if_proceed_next_topk = (topk_group_value != cuda::std::numeric_limits<T>::min());
if (case_id < num_tokens) {
bool if_proceed_next_topk = (topk_group_value != neg_inf<T>());
if (case_id < num_tokens && if_proceed_next_topk) {
for (int i_group = 0; i_group < n_group; i_group++) {
if ((group_scores[i_group] > topk_group_value) ||
((group_scores[i_group] == topk_group_value) &&
@@ -449,9 +570,11 @@ __global__ void group_idx_and_topk_idx_kernel(
int32_t offset = i_group * num_experts_per_group;
for (int32_t i = lane_id; i < align_num_experts_per_group;
i += WARP_SIZE) {
T candidates = i < num_experts_per_group
T candidates =
(i < num_experts_per_group) && isfinite(cuda_cast<float, T>(
scores_with_bias[offset + i]))
? scores_with_bias[offset + i]
: cuda::std::numeric_limits<T>::min();
: neg_inf<T>();
queue.add(candidates, offset + i);
}
if (group_scores[i_group] == topk_group_value) {
@@ -469,7 +592,7 @@ __global__ void group_idx_and_topk_idx_kernel(
// Load the valid score value
// Calculate the summation
float topk_sum = 1e-20;
if (case_id < num_tokens) {
if (case_id < num_tokens && if_proceed_next_topk) {
for (int i = lane_id;
i < warp_topk::round_up_to_multiple_of<WARP_SIZE>(topk);
i += WARP_SIZE) {
@@ -478,33 +601,45 @@ __global__ void group_idx_and_topk_idx_kernel(
if (i < topk) {
s_topk_value[i] = value;
}
topk_sum += reduce(tile, value, cg::plus<float>());
topk_sum += reduce(tile, cuda_cast<float, T>(value), cg::plus<float>());
}
}
__syncthreads();
if (case_id < num_tokens) {
if (case_id < num_tokens && if_proceed_next_topk) {
for (int i = lane_id; i < num_experts; i += WARP_SIZE) {
scores[i] = 0;
}
}
__threadfence();
__syncthreads();
__syncwarp();
if (case_id < num_tokens) {
for (int i = lane_id; i < topk; i += WARP_SIZE) {
float value = s_topk_value[i] / topk_sum * routed_scaling_factor;
scores[s_topk_idx[i]] = value;
if (if_proceed_next_topk) {
for (int i = lane_id; i < topk; i += WARP_SIZE) {
float value;
if (renormalize) {
value = cuda_cast<float, T>(s_topk_value[i]) / topk_sum *
routed_scaling_factor;
} else {
value = cuda_cast<float, T>(s_topk_value[i]) * routed_scaling_factor;
}
scores[s_topk_idx[i]] = value;
topk_indices[i] = s_topk_idx[i];
topk_values[i] = static_cast<T>(value);
topk_values[i] = cuda_cast<T, float>(value);
}
else {
} else {
for (int i = lane_id; i < topk; i += WARP_SIZE) {
topk_indices[i] = i;
topk_values[i] = static_cast<float>(1.0f / topk);
topk_values[i] = cuda_cast<T, float>(1.0f / topk);
}
}
// Note: when if_proceed_next_topk==false, choose the first 8 experts as the
// default result.
}
#if (defined(__CUDA_ARCH__) && (__CUDA_ARCH__ >= 900))
asm volatile("griddepcontrol.launch_dependents;");
#endif
}
template <typename T, typename IdxT>
@@ -518,17 +653,24 @@ void invokeNoAuxTc(T* scores,
int64_t const n_group,
int64_t const topk_group,
int64_t const topk,
bool const renormalize,
double const routed_scaling_factor,
cudaStream_t const stream) {
int64_t num_cases = num_tokens * n_group;
int64_t topk_with_k2_num_blocks = (num_cases - 1) / NUM_WARPS_PER_BLOCK + 1;
topk_with_k2_kernel<T><<<topk_with_k2_num_blocks, BLOCK_SIZE, 0, stream>>>(
group_scores,
scores_with_bias,
num_tokens,
num_cases,
n_group,
num_experts / n_group);
auto* kernel_instance1 = &topk_with_k2_kernel<T>;
cudaLaunchConfig_t config;
config.gridDim = topk_with_k2_num_blocks;
config.blockDim = BLOCK_SIZE;
config.dynamicSmemBytes = 0;
config.stream = stream;
cudaLaunchAttribute attrs[1];
attrs[0].id = cudaLaunchAttributeProgrammaticStreamSerialization;
attrs[0].val.programmaticStreamSerializationAllowed = false;
config.numAttrs = 1;
config.attrs = attrs;
cudaLaunchKernelEx(&config, kernel_instance1, group_scores, scores_with_bias,
num_tokens, num_cases, n_group, num_experts / n_group);
int64_t topk_with_k_group_num_blocks =
(num_tokens - 1) / NUM_WARPS_PER_BLOCK + 1;
@@ -536,21 +678,19 @@ void invokeNoAuxTc(T* scores,
warp_topk::calc_smem_size_for_block_wide<T, int32_t>(NUM_WARPS_PER_BLOCK,
topk);
group_idx_and_topk_idx_kernel<T><<<topk_with_k_group_num_blocks,
BLOCK_SIZE,
dynamic_smem_in_bytes,
stream>>>(scores,
group_scores,
topk_values,
topk_indices,
scores_with_bias,
num_tokens,
n_group,
topk_group,
topk,
num_experts,
num_experts / n_group,
routed_scaling_factor);
auto* kernel_instance2 = &group_idx_and_topk_idx_kernel<T, IdxT>;
config.gridDim = topk_with_k_group_num_blocks;
config.blockDim = BLOCK_SIZE;
config.dynamicSmemBytes = dynamic_smem_in_bytes;
config.stream = stream;
attrs[0].id = cudaLaunchAttributeProgrammaticStreamSerialization;
attrs[0].val.programmaticStreamSerializationAllowed = false;
config.numAttrs = 1;
config.attrs = attrs;
cudaLaunchKernelEx(&config, kernel_instance2, scores, group_scores,
topk_values, topk_indices, scores_with_bias, num_tokens,
n_group, topk_group, topk, num_experts,
num_experts / n_group, renormalize, routed_scaling_factor);
}
#define INSTANTIATE_NOAUX_TC(T, IdxT) \
@@ -564,6 +704,7 @@ void invokeNoAuxTc(T* scores,
int64_t const n_group, \
int64_t const topk_group, \
int64_t const topk, \
bool const renormalize, \
double const routed_scaling_factor, \
cudaStream_t const stream);

View File

@@ -369,6 +369,7 @@ class EPRunner:
layer.top_k,
layer.routed_scaling_factor,
layer.gate_correction_bias,
getattr(layer, "renormalize", True),
)
else:
topk_idx, topk_weights = fastdeploy.model_executor.ops.gpu.moe_topk_select(

View File

@@ -39,6 +39,7 @@ elif current_platform.is_iluvatar():
moe_expert_reduce,
)
from fastdeploy.model_executor.layers.moe.moe import get_moe_scores
from fastdeploy.model_executor.utils import TensorTracker, free_tensor, set_weight_attrs
@@ -226,15 +227,14 @@ class CutlassMoEMethod(UnquantizedFusedMoEMethod):
"""
gate_out = gate(x.cast("float32"))
if layer.topk_method == "noaux_tc":
from fastdeploy.model_executor.layers.moe.moe import get_moe_scores
gate_out, _, _ = get_moe_scores(
gate_out, topk_weights, topk_idx = get_moe_scores(
gate_out,
layer.n_group,
layer.topk_group,
layer.top_k,
layer.routed_scaling_factor,
layer.gate_correction_bias,
getattr(layer, "renormalize", True),
)
(

View File

@@ -512,6 +512,7 @@ class DeepGemmFusedMoeMethod(MoEMethodBase):
layer.top_k,
layer.routed_scaling_factor,
layer.gate_correction_bias,
getattr(layer, "renormalize", True),
)
else:
topk_ids, topk_weights = fastdeploy.model_executor.ops.gpu.moe_topk_select(

View File

@@ -263,6 +263,7 @@ class MarlinWeightOnlyMoEMethod(QuantMethodBase):
layer.top_k,
layer.routed_scaling_factor,
layer.gate_correction_bias,
getattr(layer, "renormalize", True),
)
topk_weights, topk_ids = paddle.topk(gate_out, k=layer.top_k, axis=-1, sorted=False)

View File

@@ -263,8 +263,8 @@ class TritonWeightOnlyMoEMethod(QuantMethodBase):
layer.top_k,
layer.routed_scaling_factor,
layer.gate_correction_bias,
getattr(layer, "renormalize", True),
)
topk_weights, topk_ids = paddle.topk(gate_out, k=layer.top_k, axis=-1, sorted=False)
else:
topk_ids, topk_weights = fastdeploy.model_executor.ops.gpu.moe_topk_select(
gate_out,

View File

@@ -66,6 +66,7 @@ def get_moe_scores(
top_k,
routed_scaling_factor,
e_score_correction_bias,
renormalize: bool = False,
) -> paddle.Tensor:
"""
compute moe scores using e_score_correction_bias.
@@ -79,6 +80,7 @@ def get_moe_scores(
n_group if n_group > 0 else 1,
topk_group if topk_group > 0 else 1,
top_k,
renormalize,
routed_scaling_factor,
)
return scores, topk_values, topk_idx
@@ -93,6 +95,7 @@ class FusedMoE(nn.Layer):
self,
fd_config,
reduce_results: bool = True,
renormalize: bool = False,
moe_intermediate_size: int = -1,
num_experts: int = -1,
expert_id_offset: int = 0,
@@ -119,6 +122,7 @@ class FusedMoE(nn.Layer):
self.fd_config = fd_config
self.layer_idx = layer_idx
self.reduce_results = reduce_results
self.renormalize = renormalize
self.tp_rank = fd_config.parallel_config.tensor_parallel_rank
self.tp_size = fd_config.parallel_config.tensor_parallel_size
self.ep_size = fd_config.parallel_config.expert_parallel_size

View File

@@ -121,6 +121,7 @@ class DeepSeekV3MoE(nn.Layer):
super().__init__()
self.tp_size = fd_config.parallel_config.tensor_parallel_size
self.norm_topk_prob = fd_config.model_config.norm_topk_prob
weight_key_map = {
"gate_correction_bias_key": f"{prefix}.gate.e_score_correction_bias",
@@ -150,6 +151,7 @@ class DeepSeekV3MoE(nn.Layer):
self.experts = FusedMoE(
fd_config=fd_config,
reduce_results=False,
renormalize=self.norm_topk_prob,
moe_intermediate_size=fd_config.model_config.moe_intermediate_size,
num_experts=fd_config.model_config.n_routed_experts,
top_k=fd_config.model_config.num_experts_per_tok,

View File

@@ -110,6 +110,8 @@ class Glm4Moe(nn.Layer):
self.n_routed_experts: int = fd_config.model_config.n_routed_experts
self.n_shared_experts: int = fd_config.model_config.n_shared_experts
self.norm_topk_prob = fd_config.model_config.norm_topk_prob
weight_key_map = {
"gate_correction_bias_key": f"{prefix}.gate.e_score_correction_bias",
"up_gate_proj_expert_weight_key": f"{prefix}.experts.{{}}.up_gate_proj.weight",
@@ -134,6 +136,7 @@ class Glm4Moe(nn.Layer):
self.experts = FusedMoE(
fd_config,
reduce_results=False,
renormalize=self.norm_topk_prob,
moe_intermediate_size=fd_config.model_config.moe_intermediate_size,
num_experts=fd_config.model_config.n_routed_experts,
top_k=fd_config.model_config.num_experts_per_tok,

View File

@@ -2,74 +2,103 @@ import unittest
import paddle
from fastdeploy.model_executor.ops.gpu import noaux_tc
from fastdeploy.model_executor.layers.moe.moe import get_moe_scores
class TestMoeRouting(unittest.TestCase):
def setUp(self):
self.num_tokens = 10
self.num_experts = 64
self.gating_output = paddle.rand([self.num_tokens, self.num_experts])
self.e_score_correction_bias = paddle.rand([self.num_experts])
self.n_group = 8
self.topk_group = 4
self.top_k = 8
self.routed_scaling_factor = 1.5
paddle.seed(2024)
print(paddle.device.cuda.get_device_properties())
print(paddle.__git_commit__)
def node_limit_routing(self, gate_probs):
"""将所有专家分组, 只在topk_group个group内选择专家"""
assert len(gate_probs.shape) == 2
seq_length, n_experts = gate_probs.shape
def native_group_topk(
self,
gating_output: paddle.Tensor,
topk: int,
renormalize: bool,
num_expert_group: int,
topk_group: int,
routed_scaling_factor: float,
e_score_correction_bias: paddle.Tensor,
):
original_scores = paddle.nn.functional.sigmoid(gating_output)
if len(e_score_correction_bias.shape) == 1:
e_score_correction_bias = e_score_correction_bias.unsqueeze(0)
scores = original_scores + e_score_correction_bias
group_scores = gate_probs.reshape([seq_length, 8, -1]).topk(2, axis=-1)[0].sum(axis=-1)
group_idx = paddle.topk(group_scores, k=4, axis=-1, sorted=True)[1]
group_mask = paddle.zeros_like(group_scores).put_along_axis(
group_idx, paddle.ones([], dtype="float32"), axis=-1
num_token, n_experts = scores.shape
group_scores = scores.reshape([num_token, num_expert_group, -1]).topk(2, axis=-1)[0].sum(axis=-1)
group_idx = paddle.topk(group_scores, k=topk_group, axis=-1, sorted=True)[1] # [n, top_k_group]
group_mask = paddle.zeros_like(group_scores) # [n, n_group]
group_mask.put_along_axis_(group_idx, 1.0, axis=-1) # [n, n_group]
score_mask = (
group_mask.unsqueeze(-1)
.expand([num_token, num_expert_group, n_experts // num_expert_group])
.reshape([num_token, -1])
)
score_mask = group_mask.unsqueeze(-1).expand([seq_length, 8, n_experts // 8]).reshape([seq_length, -1])
gate_probs = gate_probs.masked_fill(~score_mask.astype(paddle.bool), float("-inf"))
return gate_probs
tmp_scores = scores.masked_fill(~score_mask.astype(paddle.bool), float("-inf"))
def ref_moe_routing(self):
scores = paddle.nn.functional.sigmoid(self.gating_output)
prob_for_choice = scores + self.e_score_correction_bias.unsqueeze(0)
prob_for_choice = self.node_limit_routing(prob_for_choice)
top_logits, topk_idx_ref = paddle.topk(prob_for_choice, self.top_k, axis=1)
topk_ids = paddle.topk(tmp_scores, topk, axis=1)[1]
topk_weights = paddle.take_along_axis(original_scores, topk_ids, axis=1)
token_num, top_k = topk_idx_ref.shape
_, num_expert = prob_for_choice.shape
topk_idx_expanded = paddle.unsqueeze(topk_idx_ref, axis=-1)
indices = paddle.concat(
[
paddle.arange(token_num, dtype="int64").unsqueeze(1).tile([1, top_k]).unsqueeze(-1),
topk_idx_expanded,
],
axis=-1,
)
selected_gate_probs = paddle.gather_nd(scores, indices)
if renormalize:
topk_weights = topk_weights / paddle.sum(topk_weights, axis=1, keepdim=True)
selected_gate_probs_sum = paddle.sum(selected_gate_probs, axis=1, keepdim=True)
topk_weights_ref = selected_gate_probs / selected_gate_probs_sum
topk_weights_ref = topk_weights_ref * self.routed_scaling_factor
return topk_weights_ref, topk_idx_ref
if routed_scaling_factor != 1.0:
topk_weights = topk_weights * routed_scaling_factor
def test_moe_select(self):
scores = paddle.nn.functional.sigmoid(self.gating_output)
scores_with_bias = scores + self.e_score_correction_bias.unsqueeze(0)
return topk_weights, topk_ids
scores, topk_values, topk_idx = noaux_tc(
scores,
scores_with_bias,
self.n_group,
self.topk_group,
self.top_k,
self.routed_scaling_factor,
def test_group_topk(self):
renormalize = True
test_cases = [
# (num_experts, n_group, topk_group, top_k, routed_scaling_factor)
(128, 1, 1, 8, 1.0), # glm45-air
(256, 8, 4, 8, 2.5), # deepseek
]
for case_tuple in test_cases:
num_experts, n_group, topk_group, top_k, routed_scaling_factor = case_tuple
for num_tokens in [1, 32, 64, 128]:
gating_output = paddle.rand([num_tokens, num_experts])
e_score_correction_bias = paddle.rand([1, num_experts])
ref_topk_values, ref_topk_idx = self.native_group_topk(
gating_output=gating_output,
topk=top_k,
renormalize=renormalize,
num_expert_group=n_group,
topk_group=topk_group,
routed_scaling_factor=routed_scaling_factor,
e_score_correction_bias=e_score_correction_bias,
)
ref_topk_values, ref_topk_idx = self.ref_moe_routing()
new_score, topk_values, topk_idx = get_moe_scores(
gating_output=gating_output,
n_group=n_group,
topk_group=topk_group,
top_k=top_k,
routed_scaling_factor=routed_scaling_factor,
e_score_correction_bias=e_score_correction_bias,
renormalize=renormalize,
)
paddle.allclose(topk_values, ref_topk_values)
paddle.allclose(topk_idx.cast(int), ref_topk_idx.cast(int))
equal_topk_value = paddle.allclose(topk_values, ref_topk_values, atol=1e-03, rtol=1e-03).item()
equal_topk_ids = paddle.allclose(
topk_idx.cast("int32"), ref_topk_idx.cast("int32"), atol=0.0, rtol=0.0
).item()
print(
f"Test Case[{case_tuple}], num_tokens = {num_tokens}, equal_topk_value: {equal_topk_value}, equal_topk_ids: {equal_topk_ids}"
)
if not equal_topk_value:
print(f"ref_topk_values = {ref_topk_values}")
print(f"topk_values = {topk_values}")
if not equal_topk_ids:
print(f"ref_topk_idx = {ref_topk_idx}")
print(f"topk_idx = {topk_idx}")
assert equal_topk_value and equal_topk_ids
if __name__ == "__main__":