[Backend]Add stable_diffusion and detection models support for KunlunXin XPU (#954)

* [FlyCV] Bump up FlyCV -> official release 1.0.0

* add valid_xpu for detection

* add paddledetection model support for xpu

* support all detection model in c++ and python

* fix code

* add python stable_diffusion support

Co-authored-by: DefTruth <qiustudent_r@163.com>
Co-authored-by: DefTruth <31974251+DefTruth@users.noreply.github.com>
This commit is contained in:
yeliang2258
2022-12-26 16:22:52 +08:00
committed by GitHub
parent 8a986c23ec
commit 1911002b90
42 changed files with 857 additions and 38 deletions

12
examples/vision/detection/yolov6/python/README.md Normal file → Executable file
View File

@@ -12,7 +12,19 @@
git clone https://github.com/PaddlePaddle/FastDeploy.git
cd examples/vision/detection/yolov6/python/
https://bj.bcebos.com/paddlehub/fastdeploy/yolov6s_infer.tar
tar -xf yolov6s_infer.tar
wget https://gitee.com/paddlepaddle/PaddleDetection/raw/release/2.4/demo/000000014439.jpg
# CPU推理
python infer_paddle_model.py --model yolov6s_infer --image 000000014439.jpg --device cpu
# GPU推理
python infer_paddle_model.py --model yolov6s_infer --image 000000014439.jpg --device gpu
# XPU推理
python infer_paddle_model.py --model yolov6s_infer --image 000000014439.jpg --device xpu
```
如果想要验证ONNX模型的推理可以参考如下命令
```bash
#下载YOLOv6模型文件和测试图片
wget https://bj.bcebos.com/paddlehub/fastdeploy/yolov6s.onnx
wget https://gitee.com/paddlepaddle/PaddleDetection/raw/release/2.4/demo/000000014439.jpg

View File

@@ -0,0 +1,54 @@
import fastdeploy as fd
import cv2
import os
from fastdeploy import ModelFormat
def parse_arguments():
import argparse
import ast
parser = argparse.ArgumentParser()
parser.add_argument(
"--model", required=True, help="Path of yolov6 onnx model.")
parser.add_argument(
"--image", required=True, help="Path of test image file.")
parser.add_argument(
"--device",
type=str,
default='cpu',
help="Type of inference device, support 'cpu', 'xpu' or 'gpu'.")
return parser.parse_args()
def build_option(args):
option = fd.RuntimeOption()
if args.device.lower() == "gpu":
option.use_gpu(0)
if args.device.lower() == "xpu":
option.use_xpu()
return option
args = parse_arguments()
model_file = os.path.join(args.model, "model.pdmodel")
params_file = os.path.join(args.model, "model.pdiparams")
# 配置runtime加载模型
runtime_option = build_option(args)
model = fd.vision.detection.YOLOv6(
model_file,
params_file,
runtime_option=runtime_option,
model_format=ModelFormat.PADDLE)
# 预测图片检测结果
im = cv2.imread(args.image)
result = model.predict(im)
print(result)
# 预测结果可视化
vis_im = fd.vision.vis_detection(im, result)
cv2.imwrite("visualized_result.jpg", vis_im)
print("Visualized result save in ./visualized_result.jpg")