[Model] Add PIPNet and FaceLandmark1000 Support (#548)

* first commit for yolov7

* pybind for yolov7

* CPP README.md

* CPP README.md

* modified yolov7.cc

* README.md

* python file modify

* delete license in fastdeploy/

* repush the conflict part

* README.md modified

* README.md modified

* file path modified

* file path modified

* file path modified

* file path modified

* file path modified

* README modified

* README modified

* move some helpers to private

* add examples for yolov7

* api.md modified

* api.md modified

* api.md modified

* YOLOv7

* yolov7 release link

* yolov7 release link

* yolov7 release link

* copyright

* change some helpers to private

* change variables to const and fix documents.

* gitignore

* Transfer some funtions to private member of class

* Transfer some funtions to private member of class

* Merge from develop (#9)

* Fix compile problem in different python version (#26)

* fix some usage problem in linux

* Fix compile problem

Co-authored-by: root <root@bjyz-sys-gpu-kongming3.bjyz.baidu.com>

* Add PaddleDetetion/PPYOLOE model support (#22)

* add ppdet/ppyoloe

* Add demo code and documents

* add convert processor to vision (#27)

* update .gitignore

* Added checking for cmake include dir

* fixed missing trt_backend option bug when init from trt

* remove un-need data layout and add pre-check for dtype

* changed RGB2BRG to BGR2RGB in ppcls model

* add model_zoo yolov6 c++/python demo

* fixed CMakeLists.txt typos

* update yolov6 cpp/README.md

* add yolox c++/pybind and model_zoo demo

* move some helpers to private

* fixed CMakeLists.txt typos

* add normalize with alpha and beta

* add version notes for yolov5/yolov6/yolox

* add copyright to yolov5.cc

* revert normalize

* fixed some bugs in yolox

* fixed examples/CMakeLists.txt to avoid conflicts

* add convert processor to vision

* format examples/CMakeLists summary

* Fix bug while the inference result is empty with YOLOv5 (#29)

* Add multi-label function for yolov5

* Update README.md

Update doc

* Update fastdeploy_runtime.cc

fix variable option.trt_max_shape wrong name

* Update runtime_option.md

Update resnet model dynamic shape setting name from images to x

* Fix bug when inference result boxes are empty

* Delete detection.py

Co-authored-by: Jason <jiangjiajun@baidu.com>
Co-authored-by: root <root@bjyz-sys-gpu-kongming3.bjyz.baidu.com>
Co-authored-by: DefTruth <31974251+DefTruth@users.noreply.github.com>
Co-authored-by: huangjianhui <852142024@qq.com>

* first commit for yolor

* for merge

* Develop (#11)

* Fix compile problem in different python version (#26)

* fix some usage problem in linux

* Fix compile problem

Co-authored-by: root <root@bjyz-sys-gpu-kongming3.bjyz.baidu.com>

* Add PaddleDetetion/PPYOLOE model support (#22)

* add ppdet/ppyoloe

* Add demo code and documents

* add convert processor to vision (#27)

* update .gitignore

* Added checking for cmake include dir

* fixed missing trt_backend option bug when init from trt

* remove un-need data layout and add pre-check for dtype

* changed RGB2BRG to BGR2RGB in ppcls model

* add model_zoo yolov6 c++/python demo

* fixed CMakeLists.txt typos

* update yolov6 cpp/README.md

* add yolox c++/pybind and model_zoo demo

* move some helpers to private

* fixed CMakeLists.txt typos

* add normalize with alpha and beta

* add version notes for yolov5/yolov6/yolox

* add copyright to yolov5.cc

* revert normalize

* fixed some bugs in yolox

* fixed examples/CMakeLists.txt to avoid conflicts

* add convert processor to vision

* format examples/CMakeLists summary

* Fix bug while the inference result is empty with YOLOv5 (#29)

* Add multi-label function for yolov5

* Update README.md

Update doc

* Update fastdeploy_runtime.cc

fix variable option.trt_max_shape wrong name

* Update runtime_option.md

Update resnet model dynamic shape setting name from images to x

* Fix bug when inference result boxes are empty

* Delete detection.py

Co-authored-by: Jason <jiangjiajun@baidu.com>
Co-authored-by: root <root@bjyz-sys-gpu-kongming3.bjyz.baidu.com>
Co-authored-by: DefTruth <31974251+DefTruth@users.noreply.github.com>
Co-authored-by: huangjianhui <852142024@qq.com>

* Yolor (#16)

* Develop (#11) (#12)

* Fix compile problem in different python version (#26)

* fix some usage problem in linux

* Fix compile problem

Co-authored-by: root <root@bjyz-sys-gpu-kongming3.bjyz.baidu.com>

* Add PaddleDetetion/PPYOLOE model support (#22)

* add ppdet/ppyoloe

* Add demo code and documents

* add convert processor to vision (#27)

* update .gitignore

* Added checking for cmake include dir

* fixed missing trt_backend option bug when init from trt

* remove un-need data layout and add pre-check for dtype

* changed RGB2BRG to BGR2RGB in ppcls model

* add model_zoo yolov6 c++/python demo

* fixed CMakeLists.txt typos

* update yolov6 cpp/README.md

* add yolox c++/pybind and model_zoo demo

* move some helpers to private

* fixed CMakeLists.txt typos

* add normalize with alpha and beta

* add version notes for yolov5/yolov6/yolox

* add copyright to yolov5.cc

* revert normalize

* fixed some bugs in yolox

* fixed examples/CMakeLists.txt to avoid conflicts

* add convert processor to vision

* format examples/CMakeLists summary

* Fix bug while the inference result is empty with YOLOv5 (#29)

* Add multi-label function for yolov5

* Update README.md

Update doc

* Update fastdeploy_runtime.cc

fix variable option.trt_max_shape wrong name

* Update runtime_option.md

Update resnet model dynamic shape setting name from images to x

* Fix bug when inference result boxes are empty

* Delete detection.py

Co-authored-by: Jason <jiangjiajun@baidu.com>
Co-authored-by: root <root@bjyz-sys-gpu-kongming3.bjyz.baidu.com>
Co-authored-by: DefTruth <31974251+DefTruth@users.noreply.github.com>
Co-authored-by: huangjianhui <852142024@qq.com>

Co-authored-by: Jason <jiangjiajun@baidu.com>
Co-authored-by: root <root@bjyz-sys-gpu-kongming3.bjyz.baidu.com>
Co-authored-by: DefTruth <31974251+DefTruth@users.noreply.github.com>
Co-authored-by: huangjianhui <852142024@qq.com>

* Develop (#13)

* Fix compile problem in different python version (#26)

* fix some usage problem in linux

* Fix compile problem

Co-authored-by: root <root@bjyz-sys-gpu-kongming3.bjyz.baidu.com>

* Add PaddleDetetion/PPYOLOE model support (#22)

* add ppdet/ppyoloe

* Add demo code and documents

* add convert processor to vision (#27)

* update .gitignore

* Added checking for cmake include dir

* fixed missing trt_backend option bug when init from trt

* remove un-need data layout and add pre-check for dtype

* changed RGB2BRG to BGR2RGB in ppcls model

* add model_zoo yolov6 c++/python demo

* fixed CMakeLists.txt typos

* update yolov6 cpp/README.md

* add yolox c++/pybind and model_zoo demo

* move some helpers to private

* fixed CMakeLists.txt typos

* add normalize with alpha and beta

* add version notes for yolov5/yolov6/yolox

* add copyright to yolov5.cc

* revert normalize

* fixed some bugs in yolox

* fixed examples/CMakeLists.txt to avoid conflicts

* add convert processor to vision

* format examples/CMakeLists summary

* Fix bug while the inference result is empty with YOLOv5 (#29)

* Add multi-label function for yolov5

* Update README.md

Update doc

* Update fastdeploy_runtime.cc

fix variable option.trt_max_shape wrong name

* Update runtime_option.md

Update resnet model dynamic shape setting name from images to x

* Fix bug when inference result boxes are empty

* Delete detection.py

Co-authored-by: Jason <jiangjiajun@baidu.com>
Co-authored-by: root <root@bjyz-sys-gpu-kongming3.bjyz.baidu.com>
Co-authored-by: DefTruth <31974251+DefTruth@users.noreply.github.com>
Co-authored-by: huangjianhui <852142024@qq.com>

* documents

* documents

* documents

* documents

* documents

* documents

* documents

* documents

* documents

* documents

* documents

* documents

* Develop (#14)

* Fix compile problem in different python version (#26)

* fix some usage problem in linux

* Fix compile problem

Co-authored-by: root <root@bjyz-sys-gpu-kongming3.bjyz.baidu.com>

* Add PaddleDetetion/PPYOLOE model support (#22)

* add ppdet/ppyoloe

* Add demo code and documents

* add convert processor to vision (#27)

* update .gitignore

* Added checking for cmake include dir

* fixed missing trt_backend option bug when init from trt

* remove un-need data layout and add pre-check for dtype

* changed RGB2BRG to BGR2RGB in ppcls model

* add model_zoo yolov6 c++/python demo

* fixed CMakeLists.txt typos

* update yolov6 cpp/README.md

* add yolox c++/pybind and model_zoo demo

* move some helpers to private

* fixed CMakeLists.txt typos

* add normalize with alpha and beta

* add version notes for yolov5/yolov6/yolox

* add copyright to yolov5.cc

* revert normalize

* fixed some bugs in yolox

* fixed examples/CMakeLists.txt to avoid conflicts

* add convert processor to vision

* format examples/CMakeLists summary

* Fix bug while the inference result is empty with YOLOv5 (#29)

* Add multi-label function for yolov5

* Update README.md

Update doc

* Update fastdeploy_runtime.cc

fix variable option.trt_max_shape wrong name

* Update runtime_option.md

Update resnet model dynamic shape setting name from images to x

* Fix bug when inference result boxes are empty

* Delete detection.py

Co-authored-by: root <root@bjyz-sys-gpu-kongming3.bjyz.baidu.com>
Co-authored-by: DefTruth <31974251+DefTruth@users.noreply.github.com>
Co-authored-by: huangjianhui <852142024@qq.com>

Co-authored-by: Jason <jiangjiajun@baidu.com>
Co-authored-by: root <root@bjyz-sys-gpu-kongming3.bjyz.baidu.com>
Co-authored-by: DefTruth <31974251+DefTruth@users.noreply.github.com>
Co-authored-by: huangjianhui <852142024@qq.com>
Co-authored-by: Jason <928090362@qq.com>

* add is_dynamic for YOLO series (#22)

* modify ppmatting backend and docs

* modify ppmatting docs

* fix the PPMatting size problem

* fix LimitShort's log

* retrigger ci

* modify PPMatting docs

* modify the way  for dealing with  LimitShort

* add python comments for external models

* modify resnet c++ comments

* modify C++ comments for external models

* modify python comments and add result class comments

* fix comments compile error

* modify result.h comments

* c++ version for FaceLandmark1000

* add pipnet land1000 sigle test and python code

* fix facelandmark1000 sigle test

* fix python examples for PIPNet and FaceLandmark1000

* fix examples links for PIPNet and FaceLandmark1000

* modify test_vision_colorspace_convert.cc

* modify facealign readme

* retrigger ci

* modify README

* test ci

* fix download_prebuilt_libraries.md

* fix download_prebuilt_libraries.md

* modify for comments

* modify supported_num_landmarks

* retrigger ci

* check code style

* check code style

Co-authored-by: Jason <jiangjiajun@baidu.com>
Co-authored-by: root <root@bjyz-sys-gpu-kongming3.bjyz.baidu.com>
Co-authored-by: DefTruth <31974251+DefTruth@users.noreply.github.com>
Co-authored-by: huangjianhui <852142024@qq.com>
Co-authored-by: Jason <928090362@qq.com>
This commit is contained in:
ziqi-jin
2022-11-16 14:15:10 +08:00
committed by GitHub
parent c8e2f4663d
commit 18669b539a
31 changed files with 2325 additions and 15 deletions

View File

@@ -3,8 +3,8 @@
FastDeploy provides pre-built libraries for developers to download and install directly. Meanwhile, FastDeploy also offers easy access to compile so that developers can compile FastDeploy according to their own needs. FastDeploy provides pre-built libraries for developers to download and install directly. Meanwhile, FastDeploy also offers easy access to compile so that developers can compile FastDeploy according to their own needs.
This article is divided into two parts: This article is divided into two parts:
- [1.GPU Deployment Environment](##GPU Deployment Environment) - [1.GPU Deployment Environment](#gpu-deployment-environment)
- [2.CPU Deployment Environment](##CPU Deployment Environment) - [2.CPU Deployment Environment](#cpu-deployment-environment)
## GPU Deployment Environment ## GPU Deployment Environment

View File

@@ -5,3 +5,5 @@ FastDeploy目前支持如下人脸对齐(关键点检测)模型部署
| 模型 | 说明 | 模型格式 | 版本 | | 模型 | 说明 | 模型格式 | 版本 |
| :--- | :--- | :------- | :--- | | :--- | :--- | :------- | :--- |
| [Hsintao/pfld_106_face_landmarks](./pfld) | PFLD 系列模型 | ONNX | [CommitID:e150195](https://github.com/Hsintao/pfld_106_face_landmarks/commit/e150195) | | [Hsintao/pfld_106_face_landmarks](./pfld) | PFLD 系列模型 | ONNX | [CommitID:e150195](https://github.com/Hsintao/pfld_106_face_landmarks/commit/e150195) |
| [Single430/FaceLandmark1000](./face_landmark_1000) | FaceLandmark1000 系列模型 | ONNX | [CommitID:1a951b6](https://github.com/Single430/FaceLandmark1000/tree/1a951b6) |
| [jhb86253817/PIPNet](./pipnet) | PIPNet 系列模型 | ONNX | [CommitID:b9eab58](https://github.com/jhb86253817/PIPNet/tree/b9eab58) |

View File

@@ -0,0 +1,25 @@
# FaceLandmark 模型部署
## 模型版本说明
- [FaceLandmark1000](https://github.com/Single430/FaceLandmark1000/tree/1a951b6)
## 支持模型列表
目前FastDeploy支持如下模型的部署
- [FaceLandmark1000 模型](https://github.com/Single430/FaceLandmark1000)
## 下载预训练模型
为了方便开发者的测试下面提供了FaceLandmark导出的各系列模型开发者可直接下载使用。
| 模型 | 参数大小 | 精度 | 备注 |
|:---------------------------------------------------------------- |:----- |:----- | :------ |
| [FaceLandmark1000](https://bj.bcebos.com/paddlehub/fastdeploy/FaceLandmark1000.onnx) | 2.1M | - |
## 详细部署文档
- [Python部署](python)
- [C++部署](cpp)

View File

@@ -0,0 +1,18 @@
PROJECT(infer_demo C CXX)
CMAKE_MINIMUM_REQUIRED (VERSION 3.10)
# 指定下载解压后的fastdeploy库路径
option(FASTDEPLOY_INSTALL_DIR "Path of downloaded fastdeploy sdk.")
include(${FASTDEPLOY_INSTALL_DIR}/utils/gflags.cmake)
include(${FASTDEPLOY_INSTALL_DIR}/FastDeploy.cmake)
# 添加FastDeploy依赖头文件
include_directories(${FASTDEPLOY_INCS})
add_executable(infer_demo ${PROJECT_SOURCE_DIR}/infer.cc)
# 添加FastDeploy库依赖
if(UNIX AND (NOT APPLE) AND (NOT ANDROID))
target_link_libraries(infer_demo ${FASTDEPLOY_LIBS} gflags pthread)
else()
target_link_libraries(infer_demo ${FASTDEPLOY_LIBS} gflags)
endif()

View File

@@ -0,0 +1,84 @@
# FaceLandmark1000 C++部署示例
本目录下提供`infer.cc`快速完成FaceLandmark1000在CPU/GPU以及GPU上通过TensorRT加速部署的示例。
在部署前,需确认以下两个步骤
- 1. 软硬件环境满足要求,参考[FastDeploy环境要求](../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md)
- 2. 根据开发环境下载预编译部署库和samples代码参考[FastDeploy预编译库](../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md)
以Linux上CPU推理为例在本目录执行如下命令即可完成编译测试保证 FastDeploy 版本0.7.0以上(x.x.x >= 0.7.0)支持FaceLandmark1000模型
```bash
mkdir build
cd build
wget https://bj.bcebos.com/fastdeploy/release/cpp/fastdeploy-linux-x64-x.x.x.tgz
tar xvf fastdeploy-linux-x64-x.x.x.tgz
cmake .. -DFASTDEPLOY_INSTALL_DIR=${PWD}/fastdeploy-linux-x64-x.x.x
make -j
#下载官方转换好的 FaceLandmark1000 模型文件和测试图片
wget https://bj.bcebos.com/paddlehub/fastdeploy/FaceLandmark1000.onnx
wget https://bj.bcebos.com/paddlehub/fastdeploy/facealign_input.png
# CPU推理
./infer_demo --model FaceLandmark1000.onnx --image facealign_input.png --device cpu
# GPU推理
./infer_demo --model FaceLandmark1000.onnx --image facealign_input.png --device gpu
# GPU上TensorRT推理
./infer_demo --model FaceLandmark1000.onnx --image facealign_input.png --device gpu --backend trt
```
运行完成可视化结果如下图所示
<div width="500">
<img width="470" height="384" float="left" src="https://user-images.githubusercontent.com/67993288/200761309-90c096e2-c2f3-4140-8012-32ed84e5f389.jpg">
</div>
以上命令只适用于Linux或MacOS, Windows下SDK的使用方式请参考:
- [如何在Windows中使用FastDeploy C++ SDK](../../../../../docs/cn/faq/use_sdk_on_windows.md)
## FaceLandmark1000 C++接口
### FaceLandmark1000 类
```c++
fastdeploy::vision::facealign::FaceLandmark1000(
const string& model_file,
const string& params_file = "",
const RuntimeOption& runtime_option = RuntimeOption(),
const ModelFormat& model_format = ModelFormat::ONNX)
```
FaceLandmark1000模型加载和初始化其中model_file为导出的ONNX模型格式。
**参数**
> * **model_file**(str): 模型文件路径
> * **params_file**(str): 参数文件路径当模型格式为ONNX时此参数传入空字符串即可
> * **runtime_option**(RuntimeOption): 后端推理配置默认为None即采用默认配置
> * **model_format**(ModelFormat): 模型格式默认为ONNX格式
#### Predict函数
> ```c++
> FaceLandmark1000::Predict(cv::Mat* im, FaceAlignmentResult* result)
> ```
>
> 模型预测接口输入图像直接输出landmarks结果。
>
> **参数**
>
> > * **im**: 输入图像注意需为HWCBGR格式
> > * **result**: landmarks结果, FaceAlignmentResult说明参考[视觉模型预测结果](../../../../../docs/api/vision_results/)
### 类成员变量
用户可按照自己的实际需求,修改下列预处理参数,从而影响最终的推理和部署效果
> > * **size**(vector&lt;int&gt;): 通过此参数修改预处理过程中resize的大小包含两个整型元素表示[width, height], 默认值为[128, 128]
- [模型介绍](../../)
- [Python部署](../python)
- [视觉模型预测结果](../../../../../docs/api/vision_results/)
- [如何切换模型推理后端引擎](../../../../../docs/cn/faq/how_to_change_backend.md)

View File

@@ -0,0 +1,110 @@
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "fastdeploy/vision.h"
#include "gflags/gflags.h"
DEFINE_string(model, "", "Directory of the inference model.");
DEFINE_string(image, "", "Path of the image file.");
DEFINE_string(device, "cpu",
"Type of inference device, support 'cpu' or 'gpu'.");
DEFINE_string(backend, "default",
"The inference runtime backend, support: ['default', 'ort', "
"'paddle', 'ov', 'trt', 'paddle_trt']");
DEFINE_bool(use_fp16, false, "Whether to use FP16 mode, only support 'trt' and 'paddle_trt' backend");
void PrintUsage() {
std::cout << "Usage: infer_demo --model model_path --image img_path --device [cpu|gpu] --backend "
"[default|ort|paddle|ov|trt|paddle_trt] "
"--use_fp16 false"
<< std::endl;
std::cout << "Default value of device: cpu" << std::endl;
std::cout << "Default value of backend: default" << std::endl;
std::cout << "Default value of use_fp16: false" << std::endl;
}
bool CreateRuntimeOption(fastdeploy::RuntimeOption* option) {
if (FLAGS_device == "gpu") {
option->UseGpu();
if (FLAGS_backend == "ort") {
option->UseOrtBackend();
} else if (FLAGS_backend == "paddle") {
option->UsePaddleBackend();
} else if (FLAGS_backend == "trt" ||
FLAGS_backend == "paddle_trt") {
option->UseTrtBackend();
option->SetTrtInputShape("input", {1, 3, 128, 128});
if (FLAGS_backend == "paddle_trt") {
option->EnablePaddleToTrt();
}
if (FLAGS_use_fp16) {
option->EnableTrtFP16();
}
} else if (FLAGS_backend == "default") {
return true;
} else {
std::cout << "While inference with GPU, only support default/ort/paddle/trt/paddle_trt now, " << FLAGS_backend << " is not supported." << std::endl;
return false;
}
} else if (FLAGS_device == "cpu") {
if (FLAGS_backend == "ort") {
option->UseOrtBackend();
} else if (FLAGS_backend == "ov") {
option->UseOpenVINOBackend();
} else if (FLAGS_backend == "paddle") {
option->UsePaddleBackend();
} else if (FLAGS_backend == "default") {
return true;
} else {
std::cout << "While inference with CPU, only support default/ort/ov/paddle now, " << FLAGS_backend << " is not supported." << std::endl;
return false;
}
} else {
std::cerr << "Only support device CPU/GPU now, " << FLAGS_device << " is not supported." << std::endl;
return false;
}
return true;
}
int main(int argc, char* argv[]) {
google::ParseCommandLineFlags(&argc, &argv, true);
auto option = fastdeploy::RuntimeOption();
if (!CreateRuntimeOption(&option)) {
PrintUsage();
return -1;
}
auto model = fastdeploy::vision::facealign::FaceLandmark1000(FLAGS_model, "", option);
if (!model.Initialized()) {
std::cerr << "Failed to initialize." << std::endl;
return -1;
}
auto im = cv::imread(FLAGS_image);
auto im_bak = im.clone();
fastdeploy::vision::FaceAlignmentResult res;
if (!model.Predict(&im, &res)) {
std::cerr << "Failed to predict." << std::endl;
return -1;
}
std::cout << res.Str() << std::endl;
auto vis_im = fastdeploy::vision::VisFaceAlignment(im_bak, res);
cv::imwrite("vis_result.jpg", vis_im);
std::cout << "Visualized result saved in ./vis_result.jpg" << std::endl;
return 0;
}

View File

@@ -0,0 +1,71 @@
# FaceLandmark1000 Python部署示例
在部署前,需确认以下两个步骤
- 1. 软硬件环境满足要求,参考[FastDeploy环境要求](../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md)
- 2. FastDeploy Python whl包安装参考[FastDeploy Python安装](../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md)
本目录下提供`infer.py`快速完成FaceLandmark1000在CPU/GPU以及GPU上通过TensorRT加速部署的示例保证 FastDeploy 版本 >= 0.7.0 支持FaceLandmark1000模型。执行如下脚本即可完成
```bash
#下载部署示例代码
git clone https://github.com/PaddlePaddle/FastDeploy.git
cd FastDeploy/examples/vision/facealign/facelandmark1000/python
# 下载FaceLandmark1000模型文件和测试图片
## 原版ONNX模型
wget https://bj.bcebos.com/paddlehub/fastdeploy/FaceLandmark1000.onnx
wget https://bj.bcebos.com/paddlehub/fastdeploy/facealign_input.png
# CPU推理
python infer.py --model FaceLandmark1000.onnx --image facealign_input.png --device cpu
# GPU推理
python infer.py --model FaceLandmark1000.onnx --image facealign_input.png --device gpu
# TRT推理
python infer.py --model FaceLandmark1000.onnx --image facealign_input.png --device gpu --backend trt
```
运行完成可视化结果如下图所示
<div width="500">
<img width="470" height="384" float="left" src="https://user-images.githubusercontent.com/67993288/200761309-90c096e2-c2f3-4140-8012-32ed84e5f389.jpg">
</div>
## FaceLandmark1000 Python接口
```python
fd.vision.facealign.FaceLandmark1000(model_file, params_file=None, runtime_option=None, model_format=ModelFormat.ONNX)
```
FaceLandmark1000模型加载和初始化其中model_file为导出的ONNX模型格式
**参数**
> * **model_file**(str): 模型文件路径
> * **params_file**(str): 参数文件路径当模型格式为ONNX格式时此参数无需设定
> * **runtime_option**(RuntimeOption): 后端推理配置默认为None即采用默认配置
> * **model_format**(ModelFormat): 模型格式默认为ONNX
### predict函数
> ```python
> FaceLandmark1000.predict(input_image)
> ```
>
> 模型预测结口输入图像直接输出landmarks坐标结果。
>
> **参数**
>
> > * **input_image**(np.ndarray): 输入数据注意需为HWCBGR格式
> **返回**
>
> > 返回`fastdeploy.vision.FaceAlignmentResult`结构体,结构体说明参考文档[视觉模型预测结果](../../../../../docs/api/vision_results/)
## 其它文档
- [FaceLandmark1000 模型介绍](..)
- [FaceLandmark1000 C++部署](../cpp)
- [模型预测结果说明](../../../../../docs/api/vision_results/)
- [如何切换模型推理后端引擎](../../../../../docs/cn/faq/how_to_change_backend.md)

View File

@@ -0,0 +1,90 @@
import fastdeploy as fd
import cv2
import os
def parse_arguments():
import argparse
import ast
parser = argparse.ArgumentParser()
parser.add_argument(
"--model", required=True, help="Path of FaceLandmark1000 model.")
parser.add_argument("--image", type=str, help="Path of test image file.")
parser.add_argument(
"--device",
type=str,
default='cpu',
help="Type of inference device, support 'cpu' or 'gpu'.")
parser.add_argument(
"--backend",
type=str,
default="ort",
help="inference backend, ort, ov, trt, paddle, paddle_trt.")
parser.add_argument(
"--enable_trt_fp16",
type=ast.literal_eval,
default=False,
help="whether enable fp16 in trt/paddle_trt backend")
return parser.parse_args()
def build_option(args):
option = fd.RuntimeOption()
device = args.device
backend = args.backend
enable_trt_fp16 = args.enable_trt_fp16
if device == "gpu":
option.use_gpu()
if backend == "ort":
option.use_ort_backend()
elif backend == "paddle":
option.use_paddle_backend()
elif backend in ["trt", "paddle_trt"]:
option.use_trt_backend()
option.set_trt_input_shape("input", [1, 3, 112, 112])
if backend == "paddle_trt":
option.enable_paddle_to_trt()
if enable_trt_fp16:
option.enable_trt_fp16()
elif backend == "default":
return option
else:
raise Exception(
"While inference with GPU, only support default/ort/paddle/trt/paddle_trt now, {} is not supported.".
format(backend))
elif device == "cpu":
if backend == "ort":
option.use_ort_backend()
elif backend == "ov":
option.use_openvino_backend()
elif backend == "paddle":
option.use_paddle_backend()
elif backend == "default":
return option
else:
raise Exception(
"While inference with CPU, only support default/ort/ov/paddle now, {} is not supported.".
format(backend))
else:
raise Exception(
"Only support device CPU/GPU now, {} is not supported.".format(
device))
return option
args = parse_arguments()
# 配置runtime加载模型
runtime_option = build_option(args)
model = fd.vision.facealign.FaceLandmark1000(
args.model, runtime_option=runtime_option)
# for image
im = cv2.imread(args.image)
result = model.predict(im.copy())
print(result)
# 可视化结果
vis_im = fd.vision.vis_face_alignment(im, result)
cv2.imwrite("visualized_result.jpg", vis_im)
print("Visualized result save in ./visualized_result.jpg")

View File

@@ -0,0 +1,33 @@
# PIPNet 模型部署
## 模型版本说明
- [PIPNet](https://github.com/jhb86253817/PIPNet/tree/b9eab58)
## 支持模型列表
目前FastDeploy支持如下模型的部署
- [PIPNet 模型](https://github.com/jhb86253817/PIPNet)
## 下载预训练模型
为了方便开发者的测试下面提供了PIPNet导出的各系列模型开发者可直接下载使用。
| 模型 | 参数大小 | 精度 | 备注 |
|:---------------------------------------------------------------- |:----- |:----- | :------ |
| [PIPNet19_ResNet18_AFLW](https://bj.bcebos.com/paddlehub/fastdeploy/pipnet_resnet18_10x19x32x256_aflw.onnx) | 45.6M | - |
| [PIPNet29_ResNet18_COFW](https://bj.bcebos.com/paddlehub/fastdeploy/pipnet_resnet18_10x29x32x256_cofw.onnx) | 46.1M | - |
| [PIPNet68_ResNet18_300W](https://bj.bcebos.com/paddlehub/fastdeploy/pipnet_resnet18_10x68x32x256_300w.onnx) | 47.9M | - |
| [PIPNet98_ResNet18_WFLW](https://bj.bcebos.com/paddlehub/fastdeploy/pipnet_resnet18_10x98x32x256_wflw.onnx) | 49.3M | - |
| [PIPNet19_ResNet101_AFLW](https://bj.bcebos.com/paddlehub/fastdeploy/pipnet_resnet101_10x19x32x256_aflw.onnx) | 173.4M | - |
| [PIPNet29_ResNet101_COFW](https://bj.bcebos.com/paddlehub/fastdeploy/pipnet_resnet101_10x29x32x256_cofw.onnx) | 175.3M | - |
| [PIPNet68_ResNet101_300W](https://bj.bcebos.com/paddlehub/fastdeploy/pipnet_resnet101_10x68x32x256_300w.onnx) | 182.6M | - |
| [PIPNet98_ResNet101_WFLW](https://bj.bcebos.com/paddlehub/fastdeploy/pipnet_resnet101_10x98x32x256_wflw.onnx) | 188.3M | - |
## 详细部署文档
- [Python部署](python)
- [C++部署](cpp)

View File

@@ -0,0 +1,18 @@
PROJECT(infer_demo C CXX)
CMAKE_MINIMUM_REQUIRED (VERSION 3.10)
# 指定下载解压后的fastdeploy库路径
option(FASTDEPLOY_INSTALL_DIR "Path of downloaded fastdeploy sdk.")
include(${FASTDEPLOY_INSTALL_DIR}/utils/gflags.cmake)
include(${FASTDEPLOY_INSTALL_DIR}/FastDeploy.cmake)
# 添加FastDeploy依赖头文件
include_directories(${FASTDEPLOY_INCS})
add_executable(infer_demo ${PROJECT_SOURCE_DIR}/infer.cc)
# 添加FastDeploy库依赖
if(UNIX AND (NOT APPLE) AND (NOT ANDROID))
target_link_libraries(infer_demo ${FASTDEPLOY_LIBS} gflags pthread)
else()
target_link_libraries(infer_demo ${FASTDEPLOY_LIBS} gflags)
endif()

View File

@@ -0,0 +1,84 @@
# PIPNet C++部署示例
本目录下提供`infer.cc`快速完成PIPNet在CPU/GPU以及GPU上通过TensorRT加速部署的示例。
在部署前,需确认以下两个步骤
- 1. 软硬件环境满足要求,参考[FastDeploy环境要求](../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md)
- 2. 根据开发环境下载预编译部署库和samples代码参考[FastDeploy预编译库](../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md)
以Linux上CPU推理为例在本目录执行如下命令即可完成编译测试保证 FastDeploy 版本0.7.0以上(x.x.x >= 0.7.0)支持PIPNet模型
```bash
mkdir build
cd build
wget https://bj.bcebos.com/fastdeploy/release/cpp/fastdeploy-linux-x64-x.x.x.tgz
tar xvf fastdeploy-linux-x64-x.x.x.tgz
cmake .. -DFASTDEPLOY_INSTALL_DIR=${PWD}/fastdeploy-linux-x64-x.x.x
make -j
#下载官方转换好的 PIPNet 模型文件和测试图片
wget https://bj.bcebos.com/paddlehub/fastdeploy/pipnet_resnet18_10x19x32x256_aflw.onnx
wget https://bj.bcebos.com/paddlehub/fastdeploy/facealign_input.png
# CPU推理
./infer_demo --model pipnet_resnet18_10x19x32x256_aflw.onnx --image facealign_input.png --device cpu
# GPU推理
./infer_demo --model pipnet_resnet18_10x19x32x256_aflw.onnx --image facealign_input.png --device gpu
# GPU上TensorRT推理
./infer_demo --model pipnet_resnet18_10x19x32x256_aflw.onnx --image facealign_input.png --device gpu --backend trt
```
运行完成可视化结果如下图所示
<div width="500">
<img width="470" height="384" float="left" src="https://user-images.githubusercontent.com/67993288/200761400-08491112-56c3-470f-87ac-87be805d5658.jpg">
</div>
以上命令只适用于Linux或MacOS, Windows下SDK的使用方式请参考:
- [如何在Windows中使用FastDeploy C++ SDK](../../../../../docs/cn/faq/use_sdk_on_windows.md)
## PIPNet C++接口
### PIPNet 类
```c++
fastdeploy::vision::facealign::PIPNet(
const string& model_file,
const string& params_file = "",
const RuntimeOption& runtime_option = RuntimeOption(),
const ModelFormat& model_format = ModelFormat::ONNX)
```
PIPNet模型加载和初始化其中model_file为导出的ONNX模型格式。
**参数**
> * **model_file**(str): 模型文件路径
> * **params_file**(str): 参数文件路径当模型格式为ONNX时此参数传入空字符串即可
> * **runtime_option**(RuntimeOption): 后端推理配置默认为None即采用默认配置
> * **model_format**(ModelFormat): 模型格式默认为ONNX格式
#### Predict函数
> ```c++
> PIPNet::Predict(cv::Mat* im, FaceAlignmentResult* result)
> ```
>
> 模型预测接口输入图像直接输出landmarks结果。
>
> **参数**
>
> > * **im**: 输入图像注意需为HWCBGR格式
> > * **result**: landmarks结果, FaceAlignmentResult说明参考[视觉模型预测结果](../../../../../docs/api/vision_results/)
### 类成员变量
用户可按照自己的实际需求,修改下列预处理参数,从而影响最终的推理和部署效果
> > * **size**(vector&lt;int&gt;): 通过此参数修改预处理过程中resize的大小包含两个整型元素表示[width, height], 默认值为[256, 256]
- [模型介绍](../../)
- [Python部署](../python)
- [视觉模型预测结果](../../../../../docs/api/vision_results/)
- [如何切换模型推理后端引擎](../../../../../docs/cn/faq/how_to_change_backend.md)

View File

@@ -0,0 +1,111 @@
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "fastdeploy/vision.h"
#include "gflags/gflags.h"
DEFINE_string(model, "", "Directory of the inference model.");
DEFINE_string(image, "", "Path of the image file.");
DEFINE_string(device, "cpu",
"Type of inference device, support 'cpu' or 'gpu'.");
DEFINE_string(backend, "default",
"The inference runtime backend, support: ['default', 'ort', "
"'paddle', 'ov', 'trt', 'paddle_trt']");
DEFINE_bool(use_fp16, false, "Whether to use FP16 mode, only support 'trt' and 'paddle_trt' backend");
DEFINE_int32(num_landmarks, 19, "number of landmarks for PIPNet, the num_lms should be a number in {19, 29, 68, 98}");
void PrintUsage() {
std::cout << "Usage: infer_demo --model model_path --image img_path --device [cpu|gpu] --backend "
"[default|ort|paddle|ov|trt|paddle_trt] "
"--use_fp16 false"
<< std::endl;
std::cout << "Default value of device: cpu" << std::endl;
std::cout << "Default value of backend: default" << std::endl;
std::cout << "Default value of use_fp16: false" << std::endl;
}
bool CreateRuntimeOption(fastdeploy::RuntimeOption* option) {
if (FLAGS_device == "gpu") {
option->UseGpu();
if (FLAGS_backend == "ort") {
option->UseOrtBackend();
} else if (FLAGS_backend == "paddle") {
option->UsePaddleBackend();
} else if (FLAGS_backend == "trt" ||
FLAGS_backend == "paddle_trt") {
option->UseTrtBackend();
option->SetTrtInputShape("input", {1, 3, 128, 128});
if (FLAGS_backend == "paddle_trt") {
option->EnablePaddleToTrt();
}
if (FLAGS_use_fp16) {
option->EnableTrtFP16();
}
} else if (FLAGS_backend == "default") {
return true;
} else {
std::cout << "While inference with GPU, only support default/ort/paddle/trt/paddle_trt now, " << FLAGS_backend << " is not supported." << std::endl;
return false;
}
} else if (FLAGS_device == "cpu") {
if (FLAGS_backend == "ort") {
option->UseOrtBackend();
} else if (FLAGS_backend == "ov") {
option->UseOpenVINOBackend();
} else if (FLAGS_backend == "paddle") {
option->UsePaddleBackend();
} else if (FLAGS_backend == "default") {
return true;
} else {
std::cout << "While inference with CPU, only support default/ort/ov/paddle now, " << FLAGS_backend << " is not supported." << std::endl;
return false;
}
} else {
std::cerr << "Only support device CPU/GPU now, " << FLAGS_device << " is not supported." << std::endl;
return false;
}
return true;
}
int main(int argc, char* argv[]) {
google::ParseCommandLineFlags(&argc, &argv, true);
auto option = fastdeploy::RuntimeOption();
if (!CreateRuntimeOption(&option)) {
PrintUsage();
return -1;
}
auto model = fastdeploy::vision::facealign::PIPNet(FLAGS_model, "", option);
if (!model.Initialized()) {
std::cerr << "Failed to initialize." << std::endl;
return -1;
}
model.SetNumLandmarks(FLAGS_num_landmarks);
auto im = cv::imread(FLAGS_image);
auto im_bak = im.clone();
fastdeploy::vision::FaceAlignmentResult res;
if (!model.Predict(&im, &res)) {
std::cerr << "Failed to predict." << std::endl;
return -1;
}
std::cout << res.Str() << std::endl;
auto vis_im = fastdeploy::vision::VisFaceAlignment(im_bak, res);
cv::imwrite("vis_result.jpg", vis_im);
std::cout << "Visualized result saved in ./vis_result.jpg" << std::endl;
return 0;
}

View File

@@ -0,0 +1,71 @@
# PIPNet Python部署示例
在部署前,需确认以下两个步骤
- 1. 软硬件环境满足要求,参考[FastDeploy环境要求](../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md)
- 2. FastDeploy Python whl包安装参考[FastDeploy Python安装](../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md)
本目录下提供`infer.py`快速完成PIPNet在CPU/GPU以及GPU上通过TensorRT加速部署的示例保证 FastDeploy 版本 >= 0.7.0 支持PIPNet模型。执行如下脚本即可完成
```bash
#下载部署示例代码
git clone https://github.com/PaddlePaddle/FastDeploy.git
cd FastDeploy/examples/vision/facealign/pipnet/python
# 下载PIPNet模型文件和测试图片以及视频
## 原版ONNX模型
wget https://bj.bcebos.com/paddlehub/fastdeploy/pipnet_resnet18_10x19x32x256_aflw.onnx
wget https://bj.bcebos.com/paddlehub/fastdeploy/facealign_input.png
# CPU推理
python infer.py --model pipnet_resnet18_10x19x32x256_aflw.onnx --image facealign_input.png --device cpu
# GPU推理
python infer.py --model pipnet_resnet18_10x19x32x256_aflw.onnx --image facealign_input.png --device gpu
# TRT推理
python infer.py --model pipnet_resnet18_10x19x32x256_aflw.onnx --image facealign_input.png --device gpu --backend trt
```
运行完成可视化结果如下图所示
<div width="500">
<img width="470" height="384" float="left" src="https://user-images.githubusercontent.com/67993288/200761400-08491112-56c3-470f-87ac-87be805d5658.jpg">
</div>
## PIPNet Python接口
```python
fd.vision.facealign.PIPNet(model_file, params_file=None, runtime_option=None, model_format=ModelFormat.ONNX)
```
PIPNet模型加载和初始化其中model_file为导出的ONNX模型格式
**参数**
> * **model_file**(str): 模型文件路径
> * **params_file**(str): 参数文件路径当模型格式为ONNX格式时此参数无需设定
> * **runtime_option**(RuntimeOption): 后端推理配置默认为None即采用默认配置
> * **model_format**(ModelFormat): 模型格式默认为ONNX
### predict函数
> ```python
> PIPNet.predict(input_image)
> ```
>
> 模型预测结口输入图像直接输出landmarks坐标结果。
>
> **参数**
>
> > * **input_image**(np.ndarray): 输入数据注意需为HWCBGR格式
> **返回**
>
> > 返回`fastdeploy.vision.FaceAlignmentResult`结构体,结构体说明参考文档[视觉模型预测结果](../../../../../docs/api/vision_results/)
## 其它文档
- [PIPNet 模型介绍](..)
- [PIPNet C++部署](../cpp)
- [模型预测结果说明](../../../../../docs/api/vision_results/)
- [如何切换模型推理后端引擎](../../../../../docs/cn/faq/how_to_change_backend.md)

View File

@@ -0,0 +1,93 @@
import fastdeploy as fd
import cv2
import os
def parse_arguments():
import argparse
import ast
parser = argparse.ArgumentParser()
parser.add_argument("--model", required=True, help="Path of PIPNet model.")
parser.add_argument("--image", type=str, help="Path of test image file.")
parser.add_argument(
"--device",
type=str,
default='cpu',
help="Type of inference device, support 'cpu' or 'gpu'.")
parser.add_argument(
"--backend",
type=str,
default="ort",
help="inference backend, ort, ov, trt, paddle, paddle_trt.")
parser.add_argument(
"--enable_trt_fp16",
type=ast.literal_eval,
default=False,
help="whether enable fp16 in trt/paddle_trt backend")
parser.add_argument(
"--num_landmarks",
type=int,
default=19,
help="whether enable fp16 in trt/paddle_trt backend")
return parser.parse_args()
def build_option(args):
option = fd.RuntimeOption()
device = args.device
backend = args.backend
enable_trt_fp16 = args.enable_trt_fp16
if device == "gpu":
option.use_gpu()
if backend == "ort":
option.use_ort_backend()
elif backend == "paddle":
option.use_paddle_backend()
elif backend in ["trt", "paddle_trt"]:
option.use_trt_backend()
option.set_trt_input_shape("input", [1, 3, 112, 112])
if backend == "paddle_trt":
option.enable_paddle_to_trt()
if enable_trt_fp16:
option.enable_trt_fp16()
elif backend == "default":
return option
else:
raise Exception(
"While inference with GPU, only support default/ort/paddle/trt/paddle_trt now, {} is not supported.".
format(backend))
elif device == "cpu":
if backend == "ort":
option.use_ort_backend()
elif backend == "ov":
option.use_openvino_backend()
elif backend == "paddle":
option.use_paddle_backend()
elif backend == "default":
return option
else:
raise Exception(
"While inference with CPU, only support default/ort/ov/paddle now, {} is not supported.".
format(backend))
else:
raise Exception(
"Only support device CPU/GPU now, {} is not supported.".format(
device))
return option
args = parse_arguments()
# 配置runtime加载模型
runtime_option = build_option(args)
model = fd.vision.facealign.PIPNet(args.model, runtime_option=runtime_option)
model.num_landmarks = args.num_landmarks
# for image
im = cv2.imread(args.image)
result = model.predict(im.copy())
print(result)
# 可视化结果
vis_im = fd.vision.vis_face_alignment(im, result)
cv2.imwrite("visualized_result.jpg", vis_im)
print("Visualized result save in ./visualized_result.jpg")

View File

@@ -34,6 +34,8 @@
#include "fastdeploy/vision/facedet/contrib/ultraface.h" #include "fastdeploy/vision/facedet/contrib/ultraface.h"
#include "fastdeploy/vision/facedet/contrib/yolov5face.h" #include "fastdeploy/vision/facedet/contrib/yolov5face.h"
#include "fastdeploy/vision/facealign/contrib/pfld.h" #include "fastdeploy/vision/facealign/contrib/pfld.h"
#include "fastdeploy/vision/facealign/contrib/face_landmark_1000.h"
#include "fastdeploy/vision/facealign/contrib/pipnet.h"
#include "fastdeploy/vision/faceid/contrib/adaface.h" #include "fastdeploy/vision/faceid/contrib/adaface.h"
#include "fastdeploy/vision/faceid/contrib/arcface.h" #include "fastdeploy/vision/faceid/contrib/arcface.h"
#include "fastdeploy/vision/faceid/contrib/cosface.h" #include "fastdeploy/vision/faceid/contrib/cosface.h"

View File

@@ -16,7 +16,7 @@
namespace fastdeploy { namespace fastdeploy {
namespace vision { namespace vision {
bool BGR2RGB::ImplByOpenCV(Mat* mat) { bool BGR2RGB::ImplByOpenCV(FDMat* mat) {
cv::Mat* im = mat->GetOpenCVMat(); cv::Mat* im = mat->GetOpenCVMat();
cv::Mat new_im; cv::Mat new_im;
cv::cvtColor(*im, new_im, cv::COLOR_BGR2RGB); cv::cvtColor(*im, new_im, cv::COLOR_BGR2RGB);
@@ -25,7 +25,7 @@ bool BGR2RGB::ImplByOpenCV(Mat* mat) {
} }
#ifdef ENABLE_FLYCV #ifdef ENABLE_FLYCV
bool BGR2RGB::ImplByFlyCV(Mat* mat) { bool BGR2RGB::ImplByFlyCV(FDMat* mat) {
fcv::Mat* im = mat->GetFlyCVMat(); fcv::Mat* im = mat->GetFlyCVMat();
if (im->channels() != 3) { if (im->channels() != 3) {
FDERROR << "[BGR2RGB] The channel of input image must be 3, but not it's " FDERROR << "[BGR2RGB] The channel of input image must be 3, but not it's "
@@ -39,7 +39,7 @@ bool BGR2RGB::ImplByFlyCV(Mat* mat) {
} }
#endif #endif
bool RGB2BGR::ImplByOpenCV(Mat* mat) { bool RGB2BGR::ImplByOpenCV(FDMat* mat) {
cv::Mat* im = mat->GetOpenCVMat(); cv::Mat* im = mat->GetOpenCVMat();
cv::Mat new_im; cv::Mat new_im;
cv::cvtColor(*im, new_im, cv::COLOR_RGB2BGR); cv::cvtColor(*im, new_im, cv::COLOR_RGB2BGR);
@@ -48,7 +48,7 @@ bool RGB2BGR::ImplByOpenCV(Mat* mat) {
} }
#ifdef ENABLE_FLYCV #ifdef ENABLE_FLYCV
bool RGB2BGR::ImplByFlyCV(Mat* mat) { bool RGB2BGR::ImplByFlyCV(FDMat* mat) {
fcv::Mat* im = mat->GetFlyCVMat(); fcv::Mat* im = mat->GetFlyCVMat();
if (im->channels() != 3) { if (im->channels() != 3) {
FDERROR << "[RGB2BGR] The channel of input image must be 3, but not it's " FDERROR << "[RGB2BGR] The channel of input image must be 3, but not it's "
@@ -62,15 +62,72 @@ bool RGB2BGR::ImplByFlyCV(Mat* mat) {
} }
#endif #endif
bool BGR2RGB::Run(Mat* mat, ProcLib lib) { bool BGR2GRAY::ImplByOpenCV(FDMat* mat) {
cv::Mat* im = mat->GetOpenCVMat();
cv::Mat new_im;
cv::cvtColor(*im, new_im, cv::COLOR_BGR2GRAY);
mat->SetMat(new_im);
mat->SetChannels(1);
return true;
}
#ifdef ENABLE_FLYCV
bool BGR2GRAY::ImplByFalconCV(FDMat* mat) {
fcv::Mat* im = mat->GetFalconCVMat();
if (im->channels() != 3) {
FDERROR << "[BGR2GRAY] The channel of input image must be 3, but not it's " << im->channels() << "." << std::endl;
return false;
}
fcv::Mat new_im;
fcv::cvt_color(*im, new_im, fcv::ColorConvertType::CVT_PA_BGR2GRAY);
mat->SetMat(new_im);
return true;
}
#endif
bool RGB2GRAY::ImplByOpenCV(FDMat* mat) {
cv::Mat* im = mat->GetOpenCVMat();
cv::Mat new_im;
cv::cvtColor(*im, new_im, cv::COLOR_RGB2GRAY);
mat->SetMat(new_im);
return true;
}
#ifdef ENABLE_FLYCV
bool RGB2GRAY::ImplByFalconCV(FDMat* mat) {
fcv::Mat* im = mat->GetFalconCVMat();
if (im->channels() != 3) {
FDERROR << "[RGB2GRAY] The channel of input image must be 3, but not it's " << im->channels() << "." << std::endl;
return false;
}
fcv::Mat new_im;
fcv::cvt_color(*im, new_im, fcv::ColorConvertType::CVT_PA_RGB2GRAY);
mat->SetMat(new_im);
return true;
}
#endif
bool BGR2RGB::Run(FDMat* mat, ProcLib lib) {
auto b = BGR2RGB(); auto b = BGR2RGB();
return b(mat, lib); return b(mat, lib);
} }
bool RGB2BGR::Run(Mat* mat, ProcLib lib) { bool RGB2BGR::Run(FDMat* mat, ProcLib lib) {
auto r = RGB2BGR(); auto r = RGB2BGR();
return r(mat, lib); return r(mat, lib);
} }
bool BGR2GRAY::Run(FDMat* mat, ProcLib lib) {
auto b = BGR2GRAY();
return b(mat, lib);
}
bool RGB2GRAY::Run(FDMat* mat, ProcLib lib) {
auto r = RGB2GRAY();
return r(mat, lib);
}
} // namespace vision } // namespace vision
} // namespace fastdeploy } // namespace fastdeploy

View File

@@ -21,24 +21,48 @@ namespace vision {
class FASTDEPLOY_DECL BGR2RGB : public Processor { class FASTDEPLOY_DECL BGR2RGB : public Processor {
public: public:
bool ImplByOpenCV(Mat* mat); bool ImplByOpenCV(FDMat* mat);
#ifdef ENABLE_FLYCV #ifdef ENABLE_FLYCV
bool ImplByFlyCV(Mat* mat); bool ImplByFlyCV(FDMat* mat);
#endif #endif
virtual std::string Name() { return "BGR2RGB"; } virtual std::string Name() { return "BGR2RGB"; }
static bool Run(Mat* mat, ProcLib lib = ProcLib::DEFAULT); static bool Run(FDMat* mat, ProcLib lib = ProcLib::DEFAULT);
}; };
class FASTDEPLOY_DECL RGB2BGR : public Processor { class FASTDEPLOY_DECL RGB2BGR : public Processor {
public: public:
bool ImplByOpenCV(Mat* mat); bool ImplByOpenCV(FDMat* mat);
#ifdef ENABLE_FLYCV #ifdef ENABLE_FLYCV
bool ImplByFlyCV(Mat* mat); bool ImplByFlyCV(FDMat* mat);
#endif #endif
std::string Name() { return "RGB2BGR"; } std::string Name() { return "RGB2BGR"; }
static bool Run(Mat* mat, ProcLib lib = ProcLib::DEFAULT); static bool Run(FDMat* mat, ProcLib lib = ProcLib::DEFAULT);
}; };
class FASTDEPLOY_DECL BGR2GRAY : public Processor {
public:
bool ImplByOpenCV(FDMat* mat);
#ifdef ENABLE_FLYCV
bool ImplByFalconCV(FDMat* mat);
#endif
virtual std::string Name() { return "BGR2GRAY"; }
static bool Run(FDMat* mat, ProcLib lib = ProcLib::OPENCV);
};
class FASTDEPLOY_DECL RGB2GRAY : public Processor {
public:
bool ImplByOpenCV(FDMat* mat);
#ifdef ENABLE_FLYCV
bool ImplByFalconCV(FDMat* mat);
#endif
std::string Name() { return "RGB2GRAY"; }
static bool Run(FDMat* mat, ProcLib lib = ProcLib::OPENCV);
};
} // namespace vision } // namespace vision
} // namespace fastdeploy } // namespace fastdeploy

View File

@@ -259,7 +259,10 @@ std::string FaceAlignmentResult::Str() {
std::string out; std::string out;
out = "FaceAlignmentResult: [x, y]\n"; out = "FaceAlignmentResult: [x, y]\n";
for (size_t i = 0; i < landmarks.size(); ++i) { out = out + "There are " +std::to_string(landmarks.size()) + " landmarks, the top 10 are listed as below:\n";
int landmarks_size = landmarks.size();
size_t result_length = std::min(10, landmarks_size);
for (size_t i = 0; i < result_length; ++i) {
out = out + std::to_string(landmarks[i][0]) + "," + out = out + std::to_string(landmarks[i][0]) + "," +
std::to_string(landmarks[i][1]) + "\n"; std::to_string(landmarks[i][1]) + "\n";
} }

View File

@@ -0,0 +1,134 @@
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "fastdeploy/vision/facealign/contrib/face_landmark_1000.h"
#include "fastdeploy/utils/perf.h"
#include "fastdeploy/vision/utils/utils.h"
namespace fastdeploy {
namespace vision {
namespace facealign {
FaceLandmark1000::FaceLandmark1000(const std::string& model_file,
const std::string& params_file,
const RuntimeOption& custom_option,
const ModelFormat& model_format) {
if (model_format == ModelFormat::ONNX) {
valid_cpu_backends = {Backend::OPENVINO, Backend::ORT};
valid_gpu_backends = {Backend::ORT, Backend::TRT};
} else {
valid_cpu_backends = {Backend::PDINFER, Backend::ORT};
valid_gpu_backends = {Backend::PDINFER, Backend::ORT, Backend::TRT};
}
runtime_option = custom_option;
runtime_option.model_format = model_format;
runtime_option.model_file = model_file;
runtime_option.params_file = params_file;
initialized = Initialize();
}
bool FaceLandmark1000::Initialize() {
// parameters for preprocess
size_ = {128, 128};
if (!InitRuntime()) {
FDERROR << "Failed to initialize fastdeploy backend." << std::endl;
return false;
}
return true;
}
bool FaceLandmark1000::Preprocess(
Mat* mat, FDTensor* output,
std::map<std::string, std::array<int, 2>>* im_info) {
// Resize
int resize_w = size_[0];
int resize_h = size_[1];
if (resize_h != mat->Height() || resize_w != mat->Width()) {
Resize::Run(mat, resize_w, resize_h);
}
// BRG2GRAY
BGR2GRAY::Run(mat);
// Record output shape of preprocessed image
(*im_info)["output_shape"] = {mat->Height(), mat->Width()};
HWC2CHW::Run(mat);
Cast::Run(mat, "float");
mat->ShareWithTensor(output);
output->shape.insert(output->shape.begin(), 1); // reshape to n, h, w, c
return true;
}
bool FaceLandmark1000::Postprocess(
FDTensor& infer_result, FaceAlignmentResult* result,
const std::map<std::string, std::array<int, 2>>& im_info) {
FDASSERT(infer_result.shape[0] == 1, "Only support batch = 1 now.");
if (infer_result.dtype != FDDataType::FP32) {
FDERROR << "Only support post process with float32 data." << std::endl;
return false;
}
auto iter_in = im_info.find("input_shape");
FDASSERT(iter_in != im_info.end(), "Cannot find input_shape from im_info.");
int in_h = iter_in->second[0];
int in_w = iter_in->second[1];
result->Clear();
float* data = static_cast<float*>(infer_result.Data());
for (size_t i = 0; i < infer_result.shape[1]; i += 2) {
float x = data[i];
float y = data[i + 1];
x = std::min(std::max(0.f, x), 1.0f);
y = std::min(std::max(0.f, y), 1.0f);
// decode landmarks (default 106 landmarks)
result->landmarks.emplace_back(std::array<float, 2>{x * in_w, y * in_h});
}
return true;
}
bool FaceLandmark1000::Predict(cv::Mat* im, FaceAlignmentResult* result) {
Mat mat(*im);
std::vector<FDTensor> input_tensors(1);
std::map<std::string, std::array<int, 2>> im_info;
// Record the shape of image and the shape of preprocessed image
im_info["input_shape"] = {mat.Height(), mat.Width()};
im_info["output_shape"] = {mat.Height(), mat.Width()};
if (!Preprocess(&mat, &input_tensors[0], &im_info)) {
FDERROR << "Failed to preprocess input image." << std::endl;
return false;
}
input_tensors[0].name = InputInfoOfRuntime(0).name;
std::vector<FDTensor> output_tensors;
if (!Infer(input_tensors, &output_tensors)) {
FDERROR << "Failed to inference." << std::endl;
return false;
}
if (!Postprocess(output_tensors[0], result, im_info)) {
FDERROR << "Failed to post process." << std::endl;
return false;
}
return true;
}
} // namespace facealign
} // namespace vision
} // namespace fastdeploy

View File

@@ -0,0 +1,75 @@
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include "fastdeploy/fastdeploy_model.h"
#include "fastdeploy/vision/common/processors/transform.h"
#include "fastdeploy/vision/common/result.h"
namespace fastdeploy {
namespace vision {
namespace facealign {
/*! @brief FaceLandmark1000 model object used when to load a FaceLandmark1000 model exported by FaceLandmark1000.
*/
class FASTDEPLOY_DECL FaceLandmark1000 : public FastDeployModel {
public:
/** \brief Set path of model file and the configuration of runtime.
*
* \param[in] model_file Path of model file, e.g ./face_landmarks_1000.onnx
* \param[in] params_file Path of parameter file, e.g ppyoloe/model.pdiparams, if the model format is ONNX, this parameter will be ignored
* \param[in] custom_option RuntimeOption for inference, the default will use cpu, and choose the backend defined in "valid_cpu_backends"
* \param[in] model_format Model format of the loaded model, default is ONNX format
*/
FaceLandmark1000(const std::string& model_file,
const std::string& params_file = "",
const RuntimeOption& custom_option = RuntimeOption(),
const ModelFormat& model_format = ModelFormat::ONNX);
std::string ModelName() const { return "FaceLandmark1000"; }
/** \brief Predict the face detection result for an input image
*
* \param[in] im The input image data, comes from cv::imread(), is a 3-D array with layout HWC, BGR format
* \param[in] result The output face detection result will be writen to this structure
* \return true if the prediction successed, otherwise false
*/
virtual bool Predict(cv::Mat* im, FaceAlignmentResult* result);
/** \brief Get the input size of image
*
* \return Vector of int values, default {128,128}
*/
std::vector<int> GetSize() { return size_; }
/** \brief Set the input size of image
*
* \param[in] size Vector of int values which represents {width, height} of image
*/
void SetSize(const std::vector<int>& size) { size_ = size; }
private:
bool Initialize();
bool Preprocess(Mat* mat, FDTensor* outputs,
std::map<std::string, std::array<int, 2>>* im_info);
bool Postprocess(FDTensor& infer_result, FaceAlignmentResult* result,
const std::map<std::string, std::array<int, 2>>& im_info);
// tuple of (width, height), default (128, 128)
std::vector<int> size_;
};
} // namespace facealign
} // namespace vision
} // namespace fastdeploy

View File

@@ -0,0 +1,34 @@
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "fastdeploy/pybind/main.h"
namespace fastdeploy {
void BindFaceLandmark1000(pybind11::module& m) {
pybind11::class_<vision::facealign::FaceLandmark1000, FastDeployModel>(
m, "FaceLandmark1000")
.def(pybind11::init<std::string, std::string, RuntimeOption,
ModelFormat>())
.def(
"predict",
[](vision::facealign::FaceLandmark1000& self, pybind11::array& data) {
auto mat = PyArrayToCvMat(data);
vision::FaceAlignmentResult res;
self.Predict(&mat, &res);
return res;
})
.def_property("size", &vision::facealign::FaceLandmark1000::GetSize,
&vision::facealign::FaceLandmark1000::SetSize);
}
} // namespace fastdeploy

View File

@@ -0,0 +1,687 @@
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "fastdeploy/vision/facealign/contrib/pipnet.h"
#include "fastdeploy/vision/utils/utils.h"
namespace fastdeploy {
namespace vision {
namespace facealign {
void PIPNet::GenerateLandmarks(std::vector<FDTensor>& infer_result,
FaceAlignmentResult* result, float img_height,
float img_width) {
FDTensor outputs_cls = infer_result.at(0);
FDTensor outputs_x = infer_result.at(1);
FDTensor outputs_y = infer_result.at(2);
FDTensor outputs_nb_x = infer_result.at(3);
FDTensor outputs_nb_y = infer_result.at(4);
int grid_h = outputs_cls.shape[2]; // 8
int grid_w = outputs_cls.shape[3]; // 8
int grid_length = grid_h * grid_w; // 8 * 8 = 64
int input_h = size_[1];
int input_w = size_[0];
// fetch data from pointers
const float* outputs_cls_ptr = static_cast<float*>(outputs_cls.Data());
const float* outputs_x_ptr = static_cast<float*>(outputs_x.Data());
const float* outputs_y_ptr = static_cast<float*>(outputs_y.Data());
const float* outputs_nb_x_ptr = static_cast<float*>(outputs_nb_x.Data());
const float* outputs_nb_y_ptr = static_cast<float*>(outputs_nb_y.Data());
// find max_ids
std::vector<unsigned int> max_ids(num_landmarks_);
for (unsigned int i = 0; i < num_landmarks_; ++i) {
const float* score_ptr = outputs_cls_ptr + i * grid_length;
unsigned int max_id = 0;
float max_score = score_ptr[0];
for (unsigned int j = 0; j < grid_length; ++j) {
if (score_ptr[j] > max_score) {
max_score = score_ptr[j];
max_id = j;
}
}
max_ids[i] = max_id; // range 0~64
}
// find x & y offsets
std::vector<float> output_x_select(num_landmarks_);
std::vector<float> output_y_select(num_landmarks_);
for (unsigned int i = 0; i < num_landmarks_; ++i) {
const float* offset_x_ptr = outputs_x_ptr + i * grid_length;
const float* offset_y_ptr = outputs_y_ptr + i * grid_length;
const unsigned int max_id = max_ids.at(i);
output_x_select[i] = offset_x_ptr[max_id];
output_y_select[i] = offset_y_ptr[max_id];
}
// find nb_x & nb_y offsets
std::map<unsigned int, std::vector<float>> output_nb_x_select;
std::map<unsigned int, std::vector<float>> output_nb_y_select;
// initialize offsets map
for (unsigned int i = 0; i < num_landmarks_; ++i) {
std::vector<float> nb_x_offset(num_nb_);
std::vector<float> nb_y_offset(num_nb_);
output_nb_x_select[i] = nb_x_offset;
output_nb_y_select[i] = nb_y_offset;
}
for (unsigned int i = 0; i < num_landmarks_; ++i) {
for (unsigned int j = 0; j < num_nb_; ++j) {
const unsigned int max_id = max_ids.at(i);
const float* offset_nb_x_ptr =
outputs_nb_x_ptr + (i * num_nb_ + j) * grid_length;
const float* offset_nb_y_ptr =
outputs_nb_y_ptr + (i * num_nb_ + j) * grid_length;
output_nb_x_select[i][j] = offset_nb_x_ptr[max_id];
output_nb_y_select[i][j] = offset_nb_y_ptr[max_id];
}
}
// calculate coords
std::vector<float> lms_pred_x(num_landmarks_); // 19
std::vector<float> lms_pred_y(num_landmarks_); // 19
std::map<unsigned int, std::vector<float>> lms_pred_nb_x; // 19,10
std::map<unsigned int, std::vector<float>> lms_pred_nb_y; // 19,10
// initialize pred maps
for (unsigned int i = 0; i < num_landmarks_; ++i) {
std::vector<float> nb_x_offset(num_nb_);
std::vector<float> nb_y_offset(num_nb_);
lms_pred_nb_x[i] = nb_x_offset;
lms_pred_nb_y[i] = nb_y_offset;
}
for (unsigned int i = 0; i < num_landmarks_; ++i) {
float cx = static_cast<float>(max_ids.at(i) % grid_w);
float cy = static_cast<float>(max_ids.at(i) / grid_w);
// calculate coords & normalize
lms_pred_x[i] =
((cx + output_x_select[i]) * (float)net_stride_) / (float)input_w;
lms_pred_y[i] =
((cy + output_y_select[i]) * (float)net_stride_) / (float)input_h;
for (unsigned int j = 0; j < num_nb_; ++j) {
lms_pred_nb_x[i][j] =
((cx + output_nb_x_select[i][j]) * (float)net_stride_) /
(float)input_w;
lms_pred_nb_y[i][j] =
((cy + output_nb_y_select[i][j]) * (float)net_stride_) /
(float)input_h;
}
}
// reverse indexes
std::map<unsigned int, std::vector<float>>
tmp_nb_x; // 19,max_len_map_[num_landmarks_]
std::map<unsigned int, std::vector<float>>
tmp_nb_y; // 19,max_len_map_[num_landmarks_]
// initialize reverse maps
for (unsigned int i = 0; i < num_landmarks_; ++i) {
std::vector<float> tmp_x(max_len_map_[num_landmarks_]);
std::vector<float> tmp_y(max_len_map_[num_landmarks_]);
tmp_nb_x[i] = tmp_x;
tmp_nb_y[i] = tmp_y;
}
for (unsigned int i = 0; i < num_landmarks_; ++i) {
for (unsigned int j = 0; j < max_len_map_[num_landmarks_]; ++j) {
unsigned int ri =
reverse_index1_map_[num_landmarks_]
[i * max_len_map_[num_landmarks_] + j];
unsigned int rj =
reverse_index2_map_[num_landmarks_]
[i * max_len_map_[num_landmarks_] + j];
tmp_nb_x[i][j] = lms_pred_nb_x[ri][rj];
tmp_nb_y[i][j] = lms_pred_nb_y[ri][rj];
}
}
// merge predictions
result->Clear();
for (unsigned int i = 0; i < num_landmarks_; ++i) {
float total_x = lms_pred_x[i];
float total_y = lms_pred_y[i];
for (unsigned int j = 0; j < max_len_map_[num_landmarks_]; ++j) {
total_x += tmp_nb_x[i][j];
total_y += tmp_nb_y[i][j];
}
float x = total_x / ((float)max_len_map_[num_landmarks_] + 1.f);
float y = total_y / ((float)max_len_map_[num_landmarks_] + 1.f);
x = std::min(std::max(0.f, x), 1.0f);
y = std::min(std::max(0.f, y), 1.0f);
result->landmarks.emplace_back(
std::array<float, 2>{x * img_width, y * img_height});
}
};
void PIPNet::SetNumLandmarks(const int& num_landmarks) {
if (std::find(supported_num_landmarks_.begin(),
supported_num_landmarks_.end(),
num_landmarks) == supported_num_landmarks_.end()) {
FDWARNING << "The number of landmarks should be in {19, 29, 68, 98}."
<< std::endl;
}
num_landmarks_ = num_landmarks;
}
PIPNet::PIPNet(const std::string& model_file, const std::string& params_file,
const RuntimeOption& custom_option,
const ModelFormat& model_format) {
if (model_format == ModelFormat::ONNX) {
valid_cpu_backends = {Backend::OPENVINO, Backend::ORT};
valid_gpu_backends = {Backend::ORT, Backend::TRT};
} else {
valid_cpu_backends = {Backend::PDINFER, Backend::ORT};
valid_gpu_backends = {Backend::PDINFER, Backend::ORT, Backend::TRT};
}
runtime_option = custom_option;
runtime_option.model_format = model_format;
runtime_option.model_file = model_file;
runtime_option.params_file = params_file;
initialized = Initialize();
}
bool PIPNet::Initialize() {
// parameters for preprocess
size_ = {256, 256};
mean_vals_ = {0.485f, 0.456f, 0.406f};
std_vals_ = {0.229f, 0.224f, 0.225f};
num_nb_ = 10;
net_stride_ = 32;
num_landmarks_ = 19;
supported_num_landmarks_ = {19, 29, 68, 98};
// parameters for num_landmarks_ == 19
reverse_index1_map_[19] = {
1, 2, 6, 7, 8, 1, 2, 6, 7, 8, 1, 2, 6, 7, 8, 1, 2, 6,
0, 2, 3, 4, 6, 7, 8, 0, 2, 3, 4, 6, 7, 8, 0, 2, 3, 4,
0, 1, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 0, 1, 3, 4, 5, 6,
0, 1, 2, 4, 5, 6, 7, 8, 9, 10, 11, 14, 0, 1, 2, 4, 5, 6,
1, 2, 3, 5, 9, 10, 11, 1, 2, 3, 5, 9, 10, 11, 1, 2, 3, 5,
3, 4, 9, 10, 11, 3, 4, 9, 10, 11, 3, 4, 9, 10, 11, 3, 4, 9,
0, 1, 2, 3, 7, 8, 12, 13, 15, 0, 1, 2, 3, 7, 8, 12, 13, 15,
0, 1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 13, 15, 16, 18, 0, 1,
0, 1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,
0, 1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 14, 15, 16, 17, 18,
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 13, 14, 16, 17, 18, 0, 1,
3, 4, 5, 9, 10, 14, 17, 3, 4, 5, 9, 10, 14, 17, 3, 4, 5, 9,
0, 1, 6, 7, 8, 13, 14, 15, 16, 17, 18, 0, 1, 6, 7, 8, 13, 14,
0, 2, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 16, 17, 18, 0, 2, 5,
4, 5, 9, 10, 11, 12, 13, 15, 16, 17, 18, 4, 5, 9, 10, 11, 12, 13,
12, 13, 14, 16, 17, 18, 12, 13, 14, 16, 17, 18, 12, 13, 14, 16, 17, 18,
12, 13, 14, 15, 17, 18, 12, 13, 14, 15, 17, 18, 12, 13, 14, 15, 17, 18,
12, 13, 14, 15, 16, 18, 12, 13, 14, 15, 16, 18, 12, 13, 14, 15, 16, 18,
15, 16, 17, 15, 16, 17, 15, 16, 17, 15, 16, 17, 15, 16, 17, 15, 16, 17};
reverse_index2_map_[19] = {
0, 6, 1, 4, 6, 0, 6, 1, 4, 6, 0, 6, 1, 4, 6, 0, 6, 1, 0, 1, 8, 7, 2, 2, 3,
0, 1, 8, 7, 2, 2, 3, 0, 1, 8, 7, 3, 1, 3, 5, 5, 4, 3, 1, 5, 6, 6, 9, 3, 1,
3, 5, 5, 4, 5, 5, 3, 1, 3, 7, 5, 5, 1, 3, 4, 9, 5, 5, 3, 1, 3, 7, 7, 8, 1,
0, 3, 2, 2, 7, 8, 1, 0, 3, 2, 2, 7, 8, 1, 0, 6, 0, 6, 4, 1, 6, 0, 6, 4, 1,
6, 0, 6, 4, 1, 6, 0, 6, 1, 3, 4, 9, 1, 2, 6, 9, 8, 1, 3, 4, 9, 1, 2, 6, 9,
8, 2, 2, 2, 7, 8, 9, 0, 0, 9, 9, 9, 5, 7, 7, 8, 8, 2, 2, 4, 4, 0, 5, 6, 6,
3, 0, 4, 5, 7, 4, 3, 8, 6, 6, 9, 6, 7, 6, 5, 0, 4, 4, 8, 6, 4, 0, 3, 8, 4,
4, 9, 7, 6, 7, 9, 8, 7, 2, 2, 2, 9, 9, 9, 0, 0, 8, 5, 9, 7, 9, 9, 8, 4, 3,
1, 2, 1, 6, 8, 4, 3, 1, 2, 1, 6, 8, 4, 3, 1, 2, 6, 9, 5, 7, 8, 0, 2, 1, 3,
4, 4, 6, 9, 5, 7, 8, 0, 2, 8, 9, 8, 6, 8, 7, 7, 8, 8, 0, 0, 2, 2, 2, 5, 8,
9, 8, 9, 7, 8, 7, 5, 2, 1, 4, 4, 1, 3, 9, 7, 8, 7, 5, 2, 1, 1, 5, 7, 0, 3,
1, 1, 5, 7, 0, 3, 1, 1, 5, 7, 0, 3, 1, 3, 2, 3, 0, 0, 0, 3, 2, 3, 0, 0, 0,
3, 2, 3, 0, 0, 0, 7, 6, 1, 3, 1, 2, 7, 6, 1, 3, 1, 2, 7, 6, 1, 3, 1, 2, 5,
5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5};
max_len_map_[19] = 18;
// parameters for num_landmarks_ == 29
reverse_index1_map_[29] = {
2, 4, 5, 8, 12, 13, 16, 2, 4, 5, 8, 12, 13, 16, 2, 4, 5, 8,
12, 3, 6, 7, 9, 14, 15, 17, 3, 6, 7, 9, 14, 15, 17, 3, 6, 7,
9, 14, 0, 3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 14, 16, 0, 3, 4,
5, 6, 7, 0, 1, 2, 4, 5, 6, 7, 9, 10, 11, 12, 14, 15, 17, 0,
1, 2, 4, 5, 0, 2, 5, 8, 10, 12, 13, 16, 0, 2, 5, 8, 10, 12,
13, 16, 0, 2, 5, 0, 2, 4, 8, 10, 12, 13, 16, 0, 2, 4, 8, 10,
12, 13, 16, 0, 2, 4, 1, 3, 7, 9, 11, 14, 15, 17, 1, 3, 7, 9,
11, 14, 15, 17, 1, 3, 7, 1, 3, 6, 9, 11, 14, 15, 17, 1, 3, 6,
9, 11, 14, 15, 17, 1, 3, 6, 0, 2, 4, 5, 10, 12, 13, 16, 0, 2,
4, 5, 10, 12, 13, 16, 0, 2, 4, 1, 3, 6, 7, 11, 14, 15, 17, 1,
3, 6, 7, 11, 14, 15, 17, 1, 3, 6, 0, 2, 3, 4, 5, 8, 12, 13,
16, 18, 20, 0, 2, 3, 4, 5, 8, 12, 13, 1, 2, 3, 6, 7, 9, 14,
15, 17, 19, 20, 21, 1, 2, 3, 6, 7, 9, 14, 0, 2, 4, 5, 8, 10,
13, 16, 0, 2, 4, 5, 8, 10, 13, 16, 0, 2, 4, 0, 2, 4, 5, 8,
10, 12, 16, 18, 22, 0, 2, 4, 5, 8, 10, 12, 16, 18, 1, 3, 6, 7,
9, 11, 15, 17, 1, 3, 6, 7, 9, 11, 15, 17, 1, 3, 6, 1, 3, 6,
7, 9, 11, 14, 17, 19, 23, 1, 3, 6, 7, 9, 11, 14, 17, 19, 0, 2,
4, 5, 8, 10, 12, 13, 18, 0, 2, 4, 5, 8, 10, 12, 13, 18, 0, 1,
3, 6, 7, 9, 11, 14, 15, 19, 1, 3, 6, 7, 9, 11, 14, 15, 19, 1,
0, 4, 5, 8, 10, 12, 13, 16, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28,
0, 1, 6, 7, 9, 11, 14, 15, 17, 18, 20, 21, 22, 23, 24, 25, 26, 27,
28, 1, 1, 8, 9, 10, 11, 13, 15, 16, 17, 18, 19, 21, 22, 23, 24, 25,
26, 27, 28, 18, 19, 20, 22, 23, 24, 25, 26, 27, 28, 18, 19, 20, 22, 23,
24, 25, 26, 27, 18, 20, 21, 24, 25, 26, 27, 28, 18, 20, 21, 24, 25, 26,
27, 28, 18, 20, 21, 19, 21, 24, 25, 26, 27, 28, 19, 21, 24, 25, 26, 27,
28, 19, 21, 24, 25, 26, 18, 19, 20, 21, 22, 23, 25, 26, 27, 28, 18, 19,
20, 21, 22, 23, 25, 26, 27, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 18,
19, 20, 21, 22, 23, 24, 26, 27, 18, 19, 20, 21, 22, 23, 24, 25, 27, 28,
18, 19, 20, 21, 22, 23, 24, 25, 27, 20, 21, 22, 23, 24, 25, 26, 28, 20,
21, 22, 23, 24, 25, 26, 28, 20, 21, 22, 22, 23, 24, 25, 26, 27, 22, 23,
24, 25, 26, 27, 22, 23, 24, 25, 26, 27, 22};
reverse_index2_map_[29] = {
9, 3, 5, 3, 7, 7, 7, 9, 3, 5, 3, 7, 7, 7, 9, 3, 5, 3, 7, 9, 3, 5, 3, 7,
7, 7, 9, 3, 5, 3, 7, 7, 7, 9, 3, 5, 3, 7, 7, 6, 6, 6, 8, 9, 7, 0, 9, 6,
5, 9, 6, 7, 6, 6, 6, 8, 9, 9, 7, 6, 8, 9, 6, 6, 7, 8, 0, 9, 6, 6, 6, 9,
7, 6, 8, 9, 2, 5, 0, 5, 5, 3, 6, 5, 2, 5, 0, 5, 5, 3, 6, 5, 2, 5, 0, 1,
3, 0, 4, 4, 2, 4, 2, 1, 3, 0, 4, 4, 2, 4, 2, 1, 3, 0, 2, 4, 0, 5, 5, 3,
5, 5, 2, 4, 0, 5, 5, 3, 5, 5, 2, 4, 0, 1, 3, 0, 4, 4, 2, 4, 2, 1, 3, 0,
4, 4, 2, 4, 2, 1, 3, 0, 0, 7, 4, 3, 6, 5, 3, 4, 0, 7, 4, 3, 6, 5, 3, 4,
0, 7, 4, 0, 7, 4, 3, 6, 5, 2, 4, 0, 7, 4, 3, 6, 5, 2, 4, 0, 7, 4, 6, 0,
8, 7, 7, 6, 4, 2, 3, 5, 6, 6, 0, 8, 7, 7, 6, 4, 2, 6, 8, 0, 7, 7, 6, 4,
3, 3, 5, 7, 9, 6, 8, 0, 7, 7, 6, 4, 3, 1, 1, 1, 2, 3, 1, 0, 3, 1, 1, 1,
2, 3, 1, 0, 3, 1, 1, 5, 4, 5, 4, 0, 2, 1, 1, 6, 9, 5, 4, 5, 4, 0, 2, 1,
1, 6, 3, 1, 1, 1, 2, 3, 1, 0, 3, 1, 1, 1, 2, 3, 1, 0, 3, 1, 1, 5, 5, 5,
4, 0, 2, 1, 1, 7, 9, 5, 5, 5, 4, 0, 2, 1, 1, 7, 4, 2, 2, 2, 1, 1, 0, 0,
9, 4, 2, 2, 2, 1, 1, 0, 0, 9, 4, 4, 2, 2, 2, 1, 1, 0, 0, 9, 4, 2, 2, 2,
1, 1, 0, 0, 9, 4, 8, 9, 8, 8, 7, 8, 8, 8, 8, 1, 3, 0, 8, 5, 8, 9, 9, 9,
8, 8, 9, 8, 8, 7, 8, 8, 8, 8, 2, 4, 8, 0, 6, 7, 8, 8, 7, 8, 9, 9, 9, 9,
8, 9, 9, 9, 9, 0, 0, 0, 6, 6, 4, 4, 6, 7, 8, 1, 1, 0, 5, 5, 2, 3, 3, 4,
6, 1, 1, 0, 5, 5, 2, 3, 3, 4, 2, 8, 7, 7, 5, 4, 6, 5, 2, 8, 7, 7, 5, 4,
6, 5, 2, 8, 7, 2, 8, 8, 6, 5, 5, 4, 2, 8, 8, 6, 5, 5, 4, 2, 8, 8, 6, 5,
3, 3, 3, 1, 2, 3, 0, 2, 2, 3, 3, 3, 3, 1, 2, 3, 0, 2, 2, 4, 4, 4, 2, 1,
1, 0, 0, 1, 2, 4, 4, 4, 2, 1, 1, 0, 0, 1, 7, 6, 5, 5, 3, 2, 1, 1, 0, 1,
7, 6, 5, 5, 3, 2, 1, 1, 0, 9, 6, 4, 4, 3, 2, 1, 0, 9, 6, 4, 4, 3, 2, 1,
0, 9, 6, 4, 7, 7, 9, 9, 7, 3, 7, 7, 9, 9, 7, 3, 7, 7, 9, 9, 7, 3, 7};
max_len_map_[29] = 19;
// parameters for num_landmarks_ == 68
reverse_index1_map_[68] = {
1, 2, 17, 18, 36, 1, 2, 17, 18, 36, 1, 2, 17, 18, 36, 1, 2, 17,
18, 36, 1, 2, 0, 2, 3, 17, 0, 2, 3, 17, 0, 2, 3, 17, 0, 2,
3, 17, 0, 2, 3, 17, 0, 2, 0, 1, 3, 4, 0, 1, 3, 4, 0, 1,
3, 4, 0, 1, 3, 4, 0, 1, 3, 4, 0, 1, 1, 2, 4, 5, 1, 2,
4, 5, 1, 2, 4, 5, 1, 2, 4, 5, 1, 2, 4, 5, 1, 2, 2, 3,
5, 6, 2, 3, 5, 6, 2, 3, 5, 6, 2, 3, 5, 6, 2, 3, 5, 6,
2, 3, 3, 4, 6, 7, 3, 4, 6, 7, 3, 4, 6, 7, 3, 4, 6, 7,
3, 4, 6, 7, 3, 4, 3, 4, 5, 7, 8, 3, 4, 5, 7, 8, 3, 4,
5, 7, 8, 3, 4, 5, 7, 8, 3, 4, 5, 6, 8, 9, 5, 6, 8, 9,
5, 6, 8, 9, 5, 6, 8, 9, 5, 6, 8, 9, 5, 6, 6, 7, 9, 10,
6, 7, 9, 10, 6, 7, 9, 10, 6, 7, 9, 10, 6, 7, 9, 10, 6, 7,
7, 8, 10, 11, 7, 8, 10, 11, 7, 8, 10, 11, 7, 8, 10, 11, 7, 8,
10, 11, 7, 8, 8, 9, 11, 12, 13, 8, 9, 11, 12, 13, 8, 9, 11, 12,
13, 8, 9, 11, 12, 13, 8, 9, 9, 10, 12, 13, 9, 10, 12, 13, 9, 10,
12, 13, 9, 10, 12, 13, 9, 10, 12, 13, 9, 10, 10, 11, 13, 14, 10, 11,
13, 14, 10, 11, 13, 14, 10, 11, 13, 14, 10, 11, 13, 14, 10, 11, 11, 12,
14, 15, 11, 12, 14, 15, 11, 12, 14, 15, 11, 12, 14, 15, 11, 12, 14, 15,
11, 12, 12, 13, 15, 16, 12, 13, 15, 16, 12, 13, 15, 16, 12, 13, 15, 16,
12, 13, 15, 16, 12, 13, 13, 14, 16, 26, 13, 14, 16, 26, 13, 14, 16, 26,
13, 14, 16, 26, 13, 14, 16, 26, 13, 14, 14, 15, 25, 26, 45, 14, 15, 25,
26, 45, 14, 15, 25, 26, 45, 14, 15, 25, 26, 45, 14, 15, 0, 1, 2, 18,
19, 36, 37, 41, 0, 1, 2, 18, 19, 36, 37, 41, 0, 1, 2, 18, 19, 36,
0, 1, 17, 19, 20, 36, 37, 38, 41, 0, 1, 17, 19, 20, 36, 37, 38, 41,
0, 1, 17, 19, 0, 17, 18, 20, 21, 36, 37, 38, 40, 41, 0, 17, 18, 20,
21, 36, 37, 38, 40, 41, 0, 17, 17, 18, 19, 21, 36, 37, 38, 39, 40, 41,
17, 18, 19, 21, 36, 37, 38, 39, 40, 41, 17, 18, 18, 19, 20, 22, 27, 28,
37, 38, 39, 40, 41, 18, 19, 20, 22, 27, 28, 37, 38, 39, 40, 41, 21, 23,
24, 25, 27, 28, 42, 43, 44, 46, 47, 21, 23, 24, 25, 27, 28, 42, 43, 44,
46, 47, 22, 24, 25, 26, 42, 43, 44, 45, 46, 47, 22, 24, 25, 26, 42, 43,
44, 45, 46, 47, 22, 24, 16, 22, 23, 25, 26, 43, 44, 45, 46, 47, 16, 22,
23, 25, 26, 43, 44, 45, 46, 47, 16, 22, 15, 16, 23, 24, 26, 43, 44, 45,
46, 15, 16, 23, 24, 26, 43, 44, 45, 46, 15, 16, 23, 24, 14, 15, 16, 24,
25, 44, 45, 46, 14, 15, 16, 24, 25, 44, 45, 46, 14, 15, 16, 24, 25, 44,
20, 21, 22, 23, 28, 29, 38, 39, 40, 42, 43, 47, 20, 21, 22, 23, 28, 29,
38, 39, 40, 42, 21, 22, 27, 29, 30, 39, 40, 42, 47, 21, 22, 27, 29, 30,
39, 40, 42, 47, 21, 22, 27, 29, 27, 28, 30, 31, 35, 39, 42, 27, 28, 30,
31, 35, 39, 42, 27, 28, 30, 31, 35, 39, 42, 27, 28, 29, 31, 32, 33, 34,
35, 28, 29, 31, 32, 33, 34, 35, 28, 29, 31, 32, 33, 34, 35, 28, 2, 3,
29, 30, 32, 33, 48, 49, 2, 3, 29, 30, 32, 33, 48, 49, 2, 3, 29, 30,
32, 33, 29, 30, 31, 33, 34, 35, 49, 50, 29, 30, 31, 33, 34, 35, 49, 50,
29, 30, 31, 33, 34, 35, 29, 30, 31, 32, 34, 35, 50, 51, 52, 29, 30, 31,
32, 34, 35, 50, 51, 52, 29, 30, 31, 32, 29, 30, 31, 32, 33, 35, 52, 53,
29, 30, 31, 32, 33, 35, 52, 53, 29, 30, 31, 32, 33, 35, 13, 14, 29, 30,
32, 33, 34, 53, 54, 13, 14, 29, 30, 32, 33, 34, 53, 54, 13, 14, 29, 30,
0, 1, 2, 17, 18, 19, 20, 37, 38, 39, 40, 41, 0, 1, 2, 17, 18, 19,
20, 37, 38, 39, 0, 1, 17, 18, 19, 20, 21, 36, 38, 39, 40, 41, 0, 1,
17, 18, 19, 20, 21, 36, 38, 39, 0, 1, 17, 18, 19, 20, 21, 27, 28, 36,
37, 39, 40, 41, 0, 1, 17, 18, 19, 20, 21, 27, 19, 20, 21, 27, 28, 29,
36, 37, 38, 40, 41, 19, 20, 21, 27, 28, 29, 36, 37, 38, 40, 41, 0, 1,
17, 18, 19, 20, 21, 27, 28, 36, 37, 38, 39, 41, 0, 1, 17, 18, 19, 20,
21, 27, 0, 1, 2, 17, 18, 19, 20, 21, 36, 37, 38, 39, 40, 0, 1, 2,
17, 18, 19, 20, 21, 36, 22, 23, 24, 27, 28, 29, 43, 44, 45, 46, 47, 22,
23, 24, 27, 28, 29, 43, 44, 45, 46, 47, 15, 16, 22, 23, 24, 25, 26, 27,
42, 44, 45, 46, 47, 15, 16, 22, 23, 24, 25, 26, 27, 42, 15, 16, 22, 23,
24, 25, 26, 42, 43, 45, 46, 47, 15, 16, 22, 23, 24, 25, 26, 42, 43, 45,
14, 15, 16, 23, 24, 25, 26, 42, 43, 44, 46, 47, 14, 15, 16, 23, 24, 25,
26, 42, 43, 44, 14, 15, 16, 22, 23, 24, 25, 26, 42, 43, 44, 45, 47, 14,
15, 16, 22, 23, 24, 25, 26, 42, 15, 16, 22, 23, 24, 25, 26, 27, 28, 42,
43, 44, 45, 46, 15, 16, 22, 23, 24, 25, 26, 27, 2, 3, 4, 5, 6, 49,
59, 60, 2, 3, 4, 5, 6, 49, 59, 60, 2, 3, 4, 5, 6, 49, 3, 4,
5, 31, 32, 48, 50, 51, 59, 60, 61, 67, 3, 4, 5, 31, 32, 48, 50, 51,
59, 60, 30, 31, 32, 33, 34, 48, 49, 51, 52, 58, 59, 60, 61, 62, 66, 67,
30, 31, 32, 33, 34, 48, 30, 31, 32, 33, 34, 35, 48, 49, 50, 52, 53, 54,
56, 58, 60, 61, 62, 63, 64, 65, 66, 67, 30, 32, 33, 34, 35, 50, 51, 53,
54, 55, 56, 62, 63, 64, 65, 30, 32, 33, 34, 35, 50, 51, 11, 12, 13, 34,
35, 52, 54, 55, 63, 64, 65, 11, 12, 13, 34, 35, 52, 54, 55, 63, 64, 65,
10, 11, 12, 13, 14, 53, 55, 64, 10, 11, 12, 13, 14, 53, 55, 64, 10, 11,
12, 13, 14, 53, 8, 9, 10, 11, 12, 13, 53, 54, 56, 57, 63, 64, 65, 8,
9, 10, 11, 12, 13, 53, 54, 56, 7, 8, 9, 10, 11, 12, 54, 55, 57, 58,
63, 64, 65, 66, 7, 8, 9, 10, 11, 12, 54, 55, 6, 7, 8, 9, 10, 55,
56, 58, 59, 62, 65, 66, 67, 6, 7, 8, 9, 10, 55, 56, 58, 59, 4, 5,
6, 7, 8, 9, 48, 56, 57, 59, 60, 61, 62, 66, 67, 4, 5, 6, 7, 8,
9, 48, 3, 4, 5, 6, 7, 8, 48, 49, 57, 58, 60, 61, 67, 3, 4, 5,
6, 7, 8, 48, 49, 57, 2, 3, 4, 5, 6, 31, 48, 49, 59, 2, 3, 4,
5, 6, 31, 48, 49, 59, 2, 3, 4, 5, 31, 32, 33, 48, 49, 50, 51, 52,
57, 58, 59, 60, 62, 63, 66, 67, 31, 32, 33, 48, 49, 50, 33, 34, 48, 49,
50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 63, 64, 65, 66, 67, 33,
34, 35, 50, 51, 52, 53, 54, 55, 56, 57, 61, 62, 64, 65, 66, 34, 35, 50,
51, 52, 53, 54, 10, 11, 12, 13, 14, 35, 53, 54, 55, 10, 11, 12, 13, 14,
35, 53, 54, 55, 10, 11, 12, 13, 9, 10, 11, 12, 51, 52, 53, 54, 55, 56,
57, 58, 61, 62, 63, 64, 66, 67, 9, 10, 11, 12, 7, 8, 9, 50, 51, 52,
55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 67, 7, 8, 9, 50, 4, 5,
6, 7, 48, 49, 50, 51, 56, 57, 58, 59, 60, 61, 62, 63, 65, 66, 4, 5,
6, 7};
reverse_index2_map_[68] = {
0, 3, 1, 7, 8, 0, 3, 1, 7, 8, 0, 3, 1, 7, 8, 0, 3, 1, 7, 8, 0, 3, 1, 1, 4,
9, 1, 1, 4, 9, 1, 1, 4, 9, 1, 1, 4, 9, 1, 1, 4, 9, 1, 1, 6, 1, 1, 5, 6, 1,
1, 5, 6, 1, 1, 5, 6, 1, 1, 5, 6, 1, 1, 5, 6, 1, 5, 0, 0, 6, 5, 0, 0, 6, 5,
0, 0, 6, 5, 0, 0, 6, 5, 0, 0, 6, 5, 0, 2, 0, 1, 7, 2, 0, 1, 7, 2, 0, 1, 7,
2, 0, 1, 7, 2, 0, 1, 7, 2, 0, 2, 1, 1, 6, 2, 1, 1, 6, 2, 1, 1, 6, 2, 1, 1,
6, 2, 1, 1, 6, 2, 1, 9, 4, 0, 1, 4, 9, 4, 0, 1, 4, 9, 4, 0, 1, 4, 9, 4, 0,
1, 4, 9, 4, 5, 0, 1, 3, 5, 0, 1, 3, 5, 0, 1, 3, 5, 0, 1, 3, 5, 0, 1, 3, 5,
0, 4, 0, 0, 4, 4, 0, 0, 4, 4, 0, 0, 4, 4, 0, 0, 4, 4, 0, 0, 4, 4, 0, 3, 0,
0, 5, 3, 0, 0, 5, 3, 0, 0, 5, 3, 0, 0, 5, 3, 0, 0, 5, 3, 0, 3, 1, 0, 4, 9,
3, 1, 0, 4, 9, 3, 1, 0, 4, 9, 3, 1, 0, 4, 9, 3, 1, 6, 1, 0, 2, 6, 1, 0, 2,
6, 1, 0, 2, 6, 1, 0, 2, 6, 1, 0, 2, 6, 1, 7, 1, 0, 2, 7, 1, 0, 2, 7, 1, 0,
2, 7, 1, 0, 2, 7, 1, 0, 2, 7, 1, 6, 1, 1, 4, 6, 1, 1, 4, 6, 1, 1, 4, 6, 1,
1, 4, 6, 1, 1, 4, 6, 1, 5, 1, 0, 6, 5, 1, 0, 6, 5, 1, 0, 6, 5, 1, 0, 6, 5,
1, 0, 6, 5, 1, 3, 0, 0, 9, 3, 0, 0, 9, 3, 0, 0, 9, 3, 0, 0, 9, 3, 0, 0, 9,
3, 0, 3, 1, 7, 2, 8, 3, 1, 7, 2, 8, 3, 1, 7, 2, 8, 3, 1, 7, 2, 8, 3, 1, 0,
3, 9, 0, 4, 4, 8, 6, 0, 3, 9, 0, 4, 4, 8, 6, 0, 3, 9, 0, 4, 4, 3, 8, 0, 0,
6, 5, 7, 9, 7, 3, 8, 0, 0, 6, 5, 7, 9, 7, 3, 8, 0, 0, 7, 4, 1, 1, 6, 6, 5,
7, 9, 5, 7, 4, 1, 1, 6, 6, 5, 7, 9, 5, 7, 4, 8, 4, 1, 0, 9, 6, 4, 7, 6, 8,
8, 4, 1, 0, 9, 6, 4, 7, 6, 8, 8, 4, 9, 6, 0, 4, 2, 7, 9, 6, 5, 5, 9, 9, 6,
0, 4, 2, 7, 9, 6, 5, 5, 9, 4, 1, 6, 9, 3, 8, 5, 6, 9, 9, 6, 4, 1, 6, 9, 3,
8, 5, 6, 9, 9, 6, 0, 1, 4, 8, 7, 5, 7, 9, 8, 5, 0, 1, 4, 8, 7, 5, 7, 9, 8,
5, 0, 1, 7, 6, 0, 1, 4, 7, 5, 6, 6, 9, 7, 6, 0, 1, 4, 7, 5, 6, 6, 9, 7, 6,
8, 3, 5, 0, 0, 9, 6, 5, 7, 8, 3, 5, 0, 0, 9, 6, 5, 7, 8, 3, 5, 0, 8, 3, 1,
4, 0, 8, 4, 5, 8, 3, 1, 4, 0, 8, 4, 5, 8, 3, 1, 4, 0, 8, 9, 1, 1, 9, 1, 2,
8, 4, 7, 2, 8, 7, 9, 1, 1, 9, 1, 2, 8, 4, 7, 2, 8, 8, 0, 0, 6, 6, 8, 6, 8,
8, 8, 0, 0, 6, 6, 8, 6, 8, 8, 8, 0, 0, 5, 0, 0, 9, 9, 9, 9, 5, 0, 0, 9, 9,
9, 9, 5, 0, 0, 9, 9, 9, 9, 5, 4, 1, 2, 2, 2, 2, 2, 4, 1, 2, 2, 2, 2, 2, 4,
1, 2, 2, 2, 2, 2, 4, 8, 8, 6, 5, 0, 7, 7, 9, 8, 8, 6, 5, 0, 7, 7, 9, 8, 8,
6, 5, 0, 7, 4, 3, 0, 0, 4, 5, 8, 7, 4, 3, 0, 0, 4, 5, 8, 7, 4, 3, 0, 0, 4,
5, 7, 2, 1, 1, 1, 1, 5, 8, 5, 7, 2, 1, 1, 1, 1, 5, 8, 5, 7, 2, 1, 1, 3, 1,
5, 4, 1, 0, 6, 9, 3, 1, 5, 4, 1, 0, 6, 9, 3, 1, 5, 4, 1, 0, 8, 9, 5, 4, 9,
6, 0, 8, 7, 8, 9, 5, 4, 9, 6, 0, 8, 7, 8, 9, 5, 4, 2, 2, 4, 2, 3, 5, 8, 1,
5, 8, 4, 1, 2, 2, 4, 2, 3, 5, 8, 1, 5, 8, 5, 6, 3, 2, 2, 3, 7, 1, 1, 3, 3,
0, 5, 6, 3, 2, 2, 3, 7, 1, 1, 3, 9, 9, 6, 6, 3, 2, 2, 7, 9, 3, 2, 1, 0, 3,
9, 9, 6, 6, 3, 2, 2, 7, 9, 4, 3, 4, 3, 9, 7, 4, 2, 1, 4, 9, 4, 3, 4, 3, 9,
7, 4, 2, 1, 4, 8, 7, 7, 8, 8, 5, 5, 8, 5, 2, 3, 0, 0, 2, 8, 7, 7, 8, 8, 5,
5, 8, 4, 4, 5, 5, 5, 7, 7, 9, 0, 0, 3, 2, 2, 4, 4, 5, 5, 5, 7, 7, 9, 0, 3,
4, 9, 1, 2, 8, 2, 4, 7, 4, 2, 3, 4, 9, 1, 2, 8, 2, 4, 7, 4, 2, 9, 9, 2, 2,
3, 6, 6, 6, 1, 2, 3, 3, 0, 9, 9, 2, 2, 3, 6, 6, 6, 1, 6, 5, 7, 3, 2, 2, 3,
4, 1, 1, 1, 3, 6, 5, 7, 3, 2, 2, 3, 4, 1, 1, 4, 2, 2, 8, 5, 3, 1, 8, 4, 1,
0, 4, 4, 2, 2, 8, 5, 3, 1, 8, 4, 1, 5, 5, 4, 9, 7, 7, 5, 5, 3, 3, 0, 0, 1,
5, 5, 4, 9, 7, 7, 5, 5, 3, 7, 8, 5, 6, 8, 8, 7, 9, 6, 0, 0, 3, 2, 2, 7, 8,
5, 6, 8, 8, 7, 9, 6, 3, 2, 2, 5, 3, 3, 0, 6, 3, 2, 2, 5, 3, 3, 0, 6, 3, 2,
2, 5, 3, 6, 7, 8, 4, 6, 1, 3, 9, 4, 1, 5, 8, 6, 7, 8, 4, 6, 1, 3, 9, 4, 1,
7, 3, 3, 4, 8, 5, 1, 1, 7, 9, 8, 5, 1, 6, 9, 5, 7, 3, 3, 4, 8, 5, 9, 6, 5,
3, 5, 6, 9, 6, 1, 1, 6, 9, 8, 8, 8, 3, 0, 3, 8, 6, 6, 6, 8, 8, 5, 3, 3, 8,
2, 1, 5, 8, 9, 7, 1, 5, 4, 8, 8, 5, 3, 3, 8, 2, 8, 7, 6, 6, 4, 3, 1, 3, 5,
1, 8, 8, 7, 6, 6, 4, 3, 1, 3, 5, 1, 8, 5, 2, 2, 4, 6, 2, 4, 0, 5, 2, 2, 4,
6, 2, 4, 0, 5, 2, 2, 4, 6, 2, 7, 5, 2, 3, 6, 7, 5, 2, 2, 9, 8, 2, 5, 7, 5,
2, 3, 6, 7, 5, 2, 2, 7, 5, 2, 3, 7, 8, 6, 0, 1, 5, 7, 6, 3, 8, 7, 5, 2, 3,
7, 8, 6, 0, 8, 4, 2, 4, 8, 7, 0, 0, 7, 8, 7, 4, 7, 8, 4, 2, 4, 8, 7, 0, 0,
7, 9, 7, 3, 2, 6, 7, 6, 5, 0, 0, 6, 7, 9, 7, 3, 9, 7, 3, 2, 6, 7, 6, 7, 6,
3, 2, 5, 8, 2, 5, 8, 2, 2, 8, 4, 7, 6, 3, 2, 5, 8, 2, 5, 8, 7, 5, 3, 4, 6,
8, 0, 0, 1, 7, 5, 3, 4, 6, 8, 0, 0, 1, 7, 5, 3, 4, 7, 7, 9, 3, 2, 0, 3, 9,
6, 4, 5, 3, 2, 6, 3, 0, 7, 7, 9, 3, 2, 0, 8, 9, 8, 7, 2, 0, 2, 7, 8, 9, 6,
5, 6, 9, 7, 2, 2, 7, 2, 0, 2, 8, 7, 7, 9, 4, 0, 3, 3, 5, 4, 7, 6, 3, 3, 0,
5, 7, 7, 9, 4, 0, 3, 3, 6, 4, 3, 5, 7, 8, 0, 0, 1, 6, 4, 3, 5, 7, 8, 0, 0,
1, 6, 4, 3, 5, 8, 9, 9, 9, 7, 4, 4, 4, 2, 1, 4, 7, 9, 5, 0, 4, 2, 9, 8, 9,
9, 9, 9, 9, 9, 6, 5, 8, 6, 3, 2, 3, 6, 9, 4, 1, 4, 9, 1, 1, 9, 9, 9, 6, 8,
9, 9, 8, 4, 4, 4, 6, 7, 3, 1, 2, 4, 0, 4, 9, 9, 1, 8, 9, 9, 8};
max_len_map_[68] = 22;
// parameters for num_landmarks_ == 98
reverse_index1_map_[98] = {
1, 2, 3, 4, 5, 33, 1, 2, 3, 4, 5, 33, 1, 2, 3, 4, 5, 0,
2, 3, 4, 5, 6, 33, 0, 2, 3, 4, 5, 6, 33, 0, 2, 3, 0, 1,
3, 4, 5, 6, 0, 1, 3, 4, 5, 6, 0, 1, 3, 4, 5, 0, 1, 2,
4, 5, 6, 7, 0, 1, 2, 4, 5, 6, 7, 0, 1, 2, 0, 1, 2, 3,
5, 6, 7, 8, 0, 1, 2, 3, 5, 6, 7, 8, 0, 1, 2, 3, 4, 6,
7, 8, 9, 1, 2, 3, 4, 6, 7, 8, 9, 1, 2, 3, 4, 5, 7, 8,
9, 10, 2, 3, 4, 5, 7, 8, 9, 10, 2, 3, 4, 5, 6, 8, 9, 10,
3, 4, 5, 6, 8, 9, 10, 3, 4, 5, 4, 5, 6, 7, 9, 10, 11, 4,
5, 6, 7, 9, 10, 11, 4, 5, 6, 4, 5, 6, 7, 8, 10, 11, 12, 4,
5, 6, 7, 8, 10, 11, 12, 4, 5, 6, 7, 8, 9, 11, 12, 13, 76, 5,
6, 7, 8, 9, 11, 12, 13, 7, 8, 9, 10, 12, 13, 14, 76, 88, 7, 8,
9, 10, 12, 13, 14, 76, 8, 9, 10, 11, 13, 14, 15, 8, 9, 10, 11, 13,
14, 15, 8, 9, 10, 10, 11, 12, 14, 15, 16, 10, 11, 12, 14, 15, 16, 10,
11, 12, 14, 15, 11, 12, 13, 15, 16, 17, 11, 12, 13, 15, 16, 17, 11, 12,
13, 15, 16, 12, 13, 14, 16, 17, 18, 12, 13, 14, 16, 17, 18, 12, 13, 14,
16, 17, 13, 14, 15, 17, 18, 19, 13, 14, 15, 17, 18, 19, 13, 14, 15, 17,
18, 14, 15, 16, 18, 19, 20, 14, 15, 16, 18, 19, 20, 14, 15, 16, 18, 19,
15, 16, 17, 19, 20, 21, 15, 16, 17, 19, 20, 21, 15, 16, 17, 19, 20, 16,
17, 18, 20, 21, 22, 16, 17, 18, 20, 21, 22, 16, 17, 18, 20, 21, 17, 18,
19, 21, 22, 23, 24, 17, 18, 19, 21, 22, 23, 24, 17, 18, 19, 18, 19, 20,
22, 23, 24, 25, 82, 18, 19, 20, 22, 23, 24, 25, 82, 18, 19, 20, 21, 23,
24, 25, 26, 27, 19, 20, 21, 23, 24, 25, 26, 27, 19, 20, 21, 22, 24, 25,
26, 27, 28, 20, 21, 22, 24, 25, 26, 27, 28, 20, 21, 22, 23, 25, 26, 27,
28, 21, 22, 23, 25, 26, 27, 28, 21, 22, 23, 21, 22, 23, 24, 26, 27, 28,
29, 21, 22, 23, 24, 26, 27, 28, 29, 21, 22, 23, 24, 25, 27, 28, 29, 30,
22, 23, 24, 25, 27, 28, 29, 30, 22, 23, 24, 25, 26, 28, 29, 30, 31, 23,
24, 25, 26, 28, 29, 30, 31, 23, 24, 25, 26, 27, 29, 30, 31, 32, 24, 25,
26, 27, 29, 30, 31, 32, 24, 25, 26, 27, 28, 30, 31, 32, 25, 26, 27, 28,
30, 31, 32, 25, 26, 27, 26, 27, 28, 29, 31, 32, 26, 27, 28, 29, 31, 32,
26, 27, 28, 29, 31, 26, 27, 28, 29, 30, 32, 46, 26, 27, 28, 29, 30, 32,
46, 26, 27, 28, 27, 28, 29, 30, 31, 46, 27, 28, 29, 30, 31, 46, 27, 28,
29, 30, 31, 0, 1, 2, 3, 34, 41, 60, 0, 1, 2, 3, 34, 41, 60, 0,
1, 2, 0, 33, 35, 40, 41, 60, 0, 33, 35, 40, 41, 60, 0, 33, 35, 40,
41, 33, 34, 36, 37, 39, 40, 41, 60, 61, 62, 33, 34, 36, 37, 39, 40, 41,
34, 35, 37, 38, 39, 40, 63, 64, 34, 35, 37, 38, 39, 40, 63, 64, 34, 36,
38, 39, 51, 64, 36, 38, 39, 51, 64, 36, 38, 39, 51, 64, 36, 38, 36, 37,
39, 51, 52, 63, 64, 65, 36, 37, 39, 51, 52, 63, 64, 65, 36, 35, 36, 37,
38, 40, 62, 63, 64, 65, 66, 67, 96, 35, 36, 37, 38, 40, 33, 34, 35, 36,
37, 38, 39, 41, 60, 61, 62, 63, 65, 66, 67, 96, 33, 0, 1, 2, 33, 34,
35, 40, 60, 61, 67, 0, 1, 2, 33, 34, 35, 40, 43, 49, 50, 51, 68, 43,
49, 50, 51, 68, 43, 49, 50, 51, 68, 43, 49, 42, 44, 45, 48, 49, 50, 68,
69, 42, 44, 45, 48, 49, 50, 68, 69, 42, 42, 43, 45, 46, 47, 48, 49, 70,
42, 43, 45, 46, 47, 48, 49, 70, 42, 32, 44, 46, 47, 48, 71, 72, 73, 32,
44, 46, 47, 48, 71, 72, 73, 32, 29, 30, 31, 32, 45, 47, 72, 29, 30, 31,
32, 45, 47, 72, 29, 30, 31, 30, 31, 32, 44, 45, 46, 48, 71, 72, 73, 30,
31, 32, 44, 45, 46, 48, 42, 43, 44, 45, 46, 47, 49, 50, 69, 70, 71, 72,
73, 74, 75, 97, 42, 42, 43, 44, 48, 50, 68, 69, 70, 74, 75, 97, 42, 43,
44, 48, 50, 68, 42, 43, 49, 51, 52, 68, 69, 75, 42, 43, 49, 51, 52, 68,
69, 75, 42, 37, 38, 42, 50, 52, 53, 64, 68, 37, 38, 42, 50, 52, 53, 64,
68, 37, 51, 53, 54, 51, 53, 54, 51, 53, 54, 51, 53, 54, 51, 53, 54, 51,
53, 51, 52, 54, 55, 56, 57, 59, 51, 52, 54, 55, 56, 57, 59, 51, 52, 54,
52, 53, 55, 56, 57, 58, 59, 52, 53, 55, 56, 57, 58, 59, 52, 53, 55, 53,
54, 56, 57, 76, 77, 78, 88, 53, 54, 56, 57, 76, 77, 78, 88, 53, 53, 54,
55, 57, 58, 77, 78, 79, 88, 53, 54, 55, 57, 58, 77, 78, 79, 53, 54, 55,
56, 58, 59, 78, 79, 80, 90, 53, 54, 55, 56, 58, 59, 78, 53, 54, 56, 57,
59, 79, 80, 81, 82, 92, 53, 54, 56, 57, 59, 79, 80, 53, 54, 57, 58, 80,
81, 82, 92, 53, 54, 57, 58, 80, 81, 82, 92, 53, 0, 1, 2, 3, 4, 33,
34, 41, 61, 62, 66, 67, 96, 0, 1, 2, 3, 0, 1, 33, 34, 35, 40, 41,
60, 62, 63, 65, 66, 67, 96, 0, 1, 33, 33, 34, 35, 36, 37, 38, 39, 40,
41, 60, 61, 63, 64, 65, 66, 67, 96, 35, 36, 37, 38, 39, 40, 51, 52, 61,
62, 64, 65, 66, 67, 96, 35, 36, 36, 37, 38, 39, 51, 52, 53, 63, 65, 66,
96, 36, 37, 38, 39, 51, 52, 36, 37, 38, 39, 52, 61, 62, 63, 64, 66, 67,
96, 36, 37, 38, 39, 52, 41, 60, 61, 62, 63, 64, 65, 67, 96, 41, 60, 61,
62, 63, 64, 65, 67, 0, 1, 2, 3, 33, 34, 35, 40, 41, 60, 61, 62, 65,
66, 96, 0, 1, 42, 43, 49, 50, 51, 52, 53, 69, 74, 75, 97, 42, 43, 49,
50, 51, 52, 42, 43, 44, 48, 49, 50, 51, 68, 70, 71, 73, 74, 75, 97, 42,
43, 44, 42, 43, 44, 45, 46, 47, 48, 49, 50, 68, 69, 71, 72, 73, 74, 75,
97, 31, 32, 44, 45, 46, 47, 48, 69, 70, 72, 73, 74, 75, 97, 31, 32, 44,
28, 29, 30, 31, 32, 45, 46, 47, 70, 71, 73, 74, 97, 28, 29, 30, 31, 29,
30, 31, 32, 44, 45, 46, 47, 48, 70, 71, 72, 74, 75, 97, 29, 30, 47, 68,
69, 70, 71, 72, 73, 75, 97, 47, 68, 69, 70, 71, 72, 73, 75, 42, 43, 49,
50, 52, 68, 69, 70, 71, 72, 73, 74, 97, 42, 43, 49, 50, 6, 7, 8, 9,
10, 11, 12, 55, 77, 87, 88, 89, 95, 6, 7, 8, 9, 55, 56, 76, 78, 86,
87, 88, 89, 95, 55, 56, 76, 78, 86, 87, 88, 89, 54, 55, 56, 57, 58, 76,
77, 79, 80, 85, 86, 87, 88, 89, 90, 94, 95, 54, 55, 56, 57, 58, 59, 77,
78, 80, 81, 84, 85, 86, 89, 90, 91, 94, 54, 57, 58, 59, 78, 79, 81, 82,
83, 84, 85, 90, 91, 92, 93, 94, 54, 58, 59, 80, 82, 83, 84, 91, 92, 93,
58, 59, 80, 82, 83, 84, 91, 92, 20, 21, 22, 23, 24, 25, 26, 59, 81, 83,
91, 92, 93, 20, 21, 22, 23, 17, 18, 19, 20, 21, 22, 23, 81, 82, 84, 91,
92, 93, 17, 18, 19, 20, 16, 17, 18, 19, 20, 81, 82, 83, 85, 91, 92, 93,
94, 16, 17, 18, 19, 14, 15, 16, 17, 18, 83, 84, 86, 87, 90, 93, 94, 95,
14, 15, 16, 17, 11, 12, 13, 14, 15, 16, 76, 77, 85, 87, 88, 89, 94, 95,
11, 12, 13, 9, 10, 11, 12, 13, 14, 76, 77, 86, 88, 89, 95, 9, 10, 11,
12, 13, 7, 8, 9, 10, 11, 12, 13, 55, 76, 77, 86, 87, 89, 95, 7, 8,
9, 55, 56, 76, 77, 78, 79, 86, 87, 88, 90, 95, 55, 56, 76, 77, 78, 79,
56, 57, 58, 78, 79, 80, 83, 84, 85, 86, 87, 89, 91, 92, 93, 94, 95, 58,
59, 79, 80, 81, 82, 83, 84, 85, 90, 92, 93, 94, 58, 59, 79, 80, 19, 20,
21, 22, 23, 24, 25, 59, 81, 82, 83, 84, 91, 93, 19, 20, 21, 18, 19, 79,
80, 81, 82, 83, 84, 85, 90, 91, 92, 94, 18, 19, 79, 80, 15, 16, 17, 78,
79, 80, 83, 84, 85, 86, 87, 89, 90, 91, 93, 95, 15, 13, 14, 15, 76, 77,
78, 85, 86, 87, 88, 89, 90, 94, 13, 14, 15, 76, 34, 35, 36, 38, 39, 40,
41, 60, 61, 62, 63, 64, 65, 66, 67, 34, 35, 43, 44, 45, 47, 48, 49, 50,
68, 69, 70, 71, 72, 73, 74, 75, 43, 44};
reverse_index2_map_[98] = {
0, 2, 4, 6, 8, 4, 0, 2, 4, 6, 8, 4, 0, 2, 4, 6, 8, 0, 0, 2, 4, 6, 8, 8, 0,
0, 2, 4, 6, 8, 8, 0, 0, 2, 1, 1, 0, 2, 4, 6, 1, 1, 0, 2, 4, 6, 1, 1, 0, 2,
4, 3, 2, 1, 0, 2, 4, 6, 3, 2, 1, 0, 2, 4, 6, 3, 2, 1, 6, 3, 3, 1, 0, 2, 4,
7, 6, 3, 3, 1, 0, 2, 4, 7, 6, 6, 4, 3, 1, 0, 2, 4, 8, 6, 4, 3, 1, 0, 2, 4,
8, 6, 7, 5, 3, 1, 0, 2, 4, 9, 7, 5, 3, 1, 0, 2, 4, 9, 7, 6, 5, 3, 1, 0, 2,
4, 6, 5, 3, 1, 0, 2, 4, 6, 5, 3, 7, 5, 3, 1, 0, 2, 4, 7, 5, 3, 1, 0, 2, 4,
7, 5, 3, 9, 7, 5, 3, 1, 0, 2, 5, 9, 7, 5, 3, 1, 0, 2, 5, 9, 9, 7, 5, 3, 1,
0, 2, 5, 8, 9, 7, 5, 3, 1, 0, 2, 5, 7, 5, 3, 1, 0, 2, 5, 9, 9, 7, 5, 3, 1,
0, 2, 5, 9, 9, 5, 3, 1, 0, 2, 4, 9, 5, 3, 1, 0, 2, 4, 9, 5, 3, 6, 3, 1, 0,
2, 6, 6, 3, 1, 0, 2, 6, 6, 3, 1, 0, 2, 7, 3, 1, 0, 3, 7, 7, 3, 1, 0, 3, 7,
7, 3, 1, 0, 3, 6, 3, 1, 1, 3, 6, 6, 3, 1, 1, 3, 6, 6, 3, 1, 1, 3, 7, 3, 1,
1, 3, 7, 7, 3, 1, 1, 3, 7, 7, 3, 1, 1, 3, 6, 3, 0, 1, 3, 6, 6, 3, 0, 1, 3,
6, 6, 3, 0, 1, 3, 7, 2, 0, 1, 3, 5, 7, 2, 0, 1, 3, 5, 7, 2, 0, 1, 3, 5, 2,
0, 1, 3, 5, 5, 2, 0, 1, 3, 5, 5, 2, 0, 1, 3, 4, 2, 0, 1, 3, 5, 8, 4, 2, 0,
1, 3, 5, 8, 4, 2, 0, 5, 2, 0, 1, 3, 5, 7, 9, 5, 2, 0, 1, 3, 5, 7, 9, 5, 4,
2, 0, 1, 3, 5, 7, 9, 4, 2, 0, 1, 3, 5, 7, 9, 4, 4, 2, 0, 1, 3, 5, 7, 9, 4,
2, 0, 1, 3, 5, 7, 9, 4, 4, 2, 0, 1, 3, 5, 7, 4, 2, 0, 1, 3, 5, 7, 4, 2, 0,
9, 4, 2, 0, 1, 3, 5, 6, 9, 4, 2, 0, 1, 3, 5, 6, 9, 9, 4, 2, 0, 1, 3, 5, 6,
9, 4, 2, 0, 1, 3, 5, 6, 9, 8, 4, 2, 0, 1, 3, 4, 6, 8, 4, 2, 0, 1, 3, 4, 6,
8, 6, 4, 2, 0, 1, 3, 3, 5, 6, 4, 2, 0, 1, 3, 3, 5, 6, 6, 4, 2, 0, 1, 2, 3,
6, 4, 2, 0, 1, 2, 3, 6, 4, 2, 6, 4, 2, 0, 1, 1, 6, 4, 2, 0, 1, 1, 6, 4, 2,
0, 1, 8, 6, 4, 2, 0, 0, 9, 8, 6, 4, 2, 0, 0, 9, 8, 6, 4, 8, 6, 4, 2, 0, 6,
8, 6, 4, 2, 0, 6, 8, 6, 4, 2, 0, 2, 4, 5, 8, 3, 1, 6, 2, 4, 5, 8, 3, 1, 6,
2, 4, 5, 7, 1, 1, 5, 0, 8, 7, 1, 1, 5, 0, 8, 7, 1, 1, 5, 0, 7, 1, 2, 8, 6,
0, 5, 9, 8, 8, 7, 1, 2, 8, 6, 0, 5, 8, 2, 1, 4, 0, 6, 7, 9, 8, 2, 1, 4, 0,
6, 7, 9, 8, 1, 0, 5, 5, 7, 1, 0, 5, 5, 7, 1, 0, 5, 5, 7, 1, 0, 4, 0, 2, 2,
6, 6, 2, 8, 4, 0, 2, 2, 6, 6, 2, 8, 4, 4, 0, 2, 1, 4, 7, 4, 4, 5, 9, 9, 7,
4, 0, 2, 1, 4, 5, 2, 0, 3, 9, 9, 4, 2, 7, 5, 4, 8, 9, 8, 6, 6, 5, 5, 7, 9,
0, 0, 3, 3, 2, 6, 7, 5, 7, 9, 0, 0, 3, 3, 2, 5, 0, 6, 7, 2, 5, 0, 6, 7, 2,
5, 0, 6, 7, 2, 5, 1, 1, 8, 5, 0, 4, 9, 7, 1, 1, 8, 5, 0, 4, 9, 7, 1, 8, 1,
1, 7, 4, 0, 6, 9, 8, 1, 1, 7, 4, 0, 6, 9, 8, 7, 2, 1, 0, 6, 9, 8, 9, 7, 2,
1, 0, 6, 9, 8, 9, 7, 8, 5, 4, 2, 2, 1, 6, 8, 5, 4, 2, 2, 1, 6, 8, 5, 4, 9,
7, 6, 3, 0, 0, 3, 6, 2, 7, 9, 7, 6, 3, 0, 0, 3, 7, 3, 0, 3, 5, 2, 2, 9, 8,
4, 5, 7, 6, 7, 9, 6, 7, 2, 0, 4, 2, 1, 3, 2, 7, 9, 5, 8, 2, 0, 4, 2, 1, 3,
0, 4, 3, 1, 5, 2, 6, 8, 0, 4, 3, 1, 5, 2, 6, 8, 0, 5, 6, 5, 5, 1, 5, 8, 8,
5, 6, 5, 5, 1, 5, 8, 8, 5, 0, 1, 9, 0, 1, 9, 0, 1, 9, 0, 1, 9, 0, 1, 9, 0,
1, 7, 0, 1, 9, 9, 9, 9, 7, 0, 1, 9, 9, 9, 9, 7, 0, 1, 4, 0, 5, 2, 0, 2, 4,
4, 0, 5, 2, 0, 2, 4, 4, 0, 5, 6, 5, 0, 8, 6, 6, 9, 6, 6, 5, 0, 8, 6, 6, 9,
6, 6, 3, 2, 0, 2, 7, 7, 5, 7, 8, 3, 2, 0, 2, 7, 7, 5, 7, 2, 0, 2, 1, 1, 2,
4, 3, 5, 7, 2, 0, 2, 1, 1, 2, 4, 4, 3, 7, 1, 0, 5, 4, 8, 8, 8, 4, 3, 7, 1,
0, 5, 4, 7, 4, 7, 0, 9, 6, 6, 6, 7, 4, 7, 0, 9, 6, 6, 6, 7, 4, 5, 6, 7, 8,
2, 5, 4, 1, 9, 6, 1, 9, 4, 5, 6, 7, 8, 9, 3, 4, 6, 2, 3, 1, 2, 9, 7, 4, 0,
5, 8, 9, 3, 9, 6, 5, 6, 7, 7, 3, 1, 7, 4, 2, 3, 6, 4, 1, 4, 0, 8, 5, 3, 3,
1, 8, 8, 9, 7, 3, 1, 0, 5, 8, 3, 8, 5, 8, 4, 2, 8, 4, 3, 9, 1, 1, 7, 8, 8,
4, 2, 8, 4, 3, 9, 6, 5, 9, 7, 9, 6, 0, 0, 3, 5, 2, 9, 6, 5, 9, 7, 9, 3, 4,
1, 5, 5, 3, 2, 1, 9, 3, 4, 1, 5, 5, 3, 2, 9, 8, 8, 9, 6, 7, 9, 9, 6, 0, 0,
5, 6, 2, 4, 9, 8, 4, 8, 8, 2, 3, 2, 8, 1, 8, 1, 9, 4, 8, 8, 2, 3, 2, 3, 5,
8, 8, 1, 3, 9, 0, 3, 7, 8, 5, 0, 5, 3, 5, 8, 9, 6, 5, 6, 8, 6, 1, 4, 7, 6,
4, 2, 5, 4, 2, 4, 0, 9, 8, 6, 4, 3, 3, 4, 9, 1, 1, 0, 4, 7, 2, 9, 8, 6, 8,
7, 7, 5, 4, 5, 2, 5, 8, 1, 1, 6, 7, 8, 7, 7, 5, 9, 8, 8, 9, 9, 7, 4, 7, 9,
5, 0, 0, 1, 6, 3, 9, 8, 9, 5, 5, 2, 4, 3, 2, 3, 1, 9, 5, 5, 2, 4, 3, 2, 3,
6, 9, 9, 6, 8, 1, 0, 6, 8, 9, 5, 3, 4, 6, 9, 9, 6, 9, 8, 6, 6, 5, 6, 7, 8,
4, 2, 0, 8, 7, 9, 8, 6, 6, 1, 5, 2, 7, 5, 3, 2, 0, 3, 1, 5, 2, 7, 5, 3, 2,
0, 7, 4, 3, 4, 9, 7, 5, 1, 3, 7, 7, 6, 7, 2, 2, 3, 4, 6, 7, 4, 3, 4, 6, 9,
0, 0, 9, 9, 6, 9, 7, 0, 7, 2, 8, 5, 3, 3, 3, 2, 5, 7, 6, 7, 8, 3, 2, 7, 4,
4, 8, 5, 1, 6, 2, 3, 5, 0, 2, 3, 5, 1, 6, 2, 3, 5, 0, 2, 7, 6, 6, 6, 7, 8,
9, 8, 4, 2, 8, 0, 8, 7, 6, 6, 6, 8, 7, 6, 5, 7, 8, 9, 3, 1, 1, 3, 1, 2, 8,
7, 6, 5, 7, 5, 4, 5, 9, 7, 5, 5, 1, 4, 5, 1, 5, 7, 5, 4, 5, 8, 5, 4, 6, 8,
8, 2, 2, 8, 4, 9, 0, 9, 8, 5, 4, 6, 9, 8, 4, 4, 6, 8, 5, 8, 2, 5, 5, 4, 6,
1, 9, 8, 4, 9, 8, 5, 4, 6, 7, 1, 3, 1, 1, 3, 2, 9, 8, 5, 4, 6, 9, 8, 7, 7,
8, 9, 9, 6, 0, 2, 8, 1, 5, 5, 9, 8, 7, 3, 6, 3, 0, 2, 8, 3, 4, 3, 6, 0, 3,
6, 3, 0, 2, 8, 8, 6, 8, 1, 0, 1, 9, 6, 3, 6, 9, 6, 6, 9, 7, 1, 8, 6, 5, 6,
2, 0, 3, 4, 3, 9, 5, 3, 0, 9, 6, 5, 6, 2, 9, 8, 8, 7, 7, 9, 9, 7, 2, 0, 1,
8, 5, 5, 9, 8, 8, 9, 8, 9, 8, 1, 4, 0, 0, 4, 8, 1, 4, 7, 9, 8, 9, 8, 8, 9,
9, 6, 4, 7, 7, 4, 0, 4, 7, 9, 1, 9, 6, 6, 8, 8, 9, 9, 4, 1, 8, 5, 0, 0, 4,
1, 9, 8, 8, 9, 9, 4, 9, 7, 7, 8, 7, 7, 8, 5, 3, 0, 2, 3, 2, 0, 3, 9, 7, 7,
7, 9, 8, 7, 7, 8, 4, 3, 0, 3, 4, 3, 0, 2, 7, 7};
max_len_map_[98] = 17;
if (!InitRuntime()) {
FDERROR << "Failed to initialize fastdeploy backend." << std::endl;
return false;
}
return true;
}
bool PIPNet::Preprocess(Mat* mat, FDTensor* output,
std::map<std::string, std::array<int, 2>>* im_info) {
// Resize
int resize_w = size_[0];
int resize_h = size_[1];
if (resize_h != mat->Height() || resize_w != mat->Width()) {
Resize::Run(mat, resize_w, resize_h);
}
// RGR2RGB
BGR2RGB::Run(mat);
// Normalize
Normalize::Run(mat, mean_vals_, std_vals_);
// Record output shape of preprocessed image
(*im_info)["output_shape"] = {mat->Height(), mat->Width()};
HWC2CHW::Run(mat);
Cast::Run(mat, "float");
mat->ShareWithTensor(output);
output->shape.insert(output->shape.begin(), 1); // reshape to n, h, w, c
return true;
}
bool PIPNet::Postprocess(
std::vector<FDTensor>& infer_result, FaceAlignmentResult* result,
const std::map<std::string, std::array<int, 2>>& im_info) {
FDASSERT(infer_result.at(0).shape[0] == 1, "Only support batch = 1 now.");
if (infer_result.at(0).dtype != FDDataType::FP32) {
FDERROR << "Only support post process with float32 data." << std::endl;
return false;
}
auto iter_in = im_info.find("input_shape");
FDASSERT(iter_in != im_info.end(), "Cannot find input_shape from im_info.");
int in_h = iter_in->second[0];
int in_w = iter_in->second[1];
GenerateLandmarks(infer_result, result, in_h, in_w);
return true;
}
bool PIPNet::Predict(cv::Mat* im, FaceAlignmentResult* result) {
Mat mat(*im);
std::vector<FDTensor> input_tensors(1);
std::map<std::string, std::array<int, 2>> im_info;
// Record the shape of image and the shape of preprocessed image
im_info["input_shape"] = {mat.Height(), mat.Width()};
im_info["output_shape"] = {mat.Height(), mat.Width()};
if (!Preprocess(&mat, &input_tensors[0], &im_info)) {
FDERROR << "Failed to preprocess input image." << std::endl;
return false;
}
input_tensors[0].name = InputInfoOfRuntime(0).name;
std::vector<FDTensor> output_tensors;
if (!Infer(input_tensors, &output_tensors)) {
FDERROR << "Failed to inference." << std::endl;
return false;
}
if (!Postprocess(output_tensors, result, im_info)) {
FDERROR << "Failed to post process." << std::endl;
return false;
}
return true;
}
} // namespace facealign
} // namespace vision
} // namespace fastdeploy

View File

@@ -0,0 +1,127 @@
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include "fastdeploy/fastdeploy_model.h"
#include "fastdeploy/vision/common/processors/transform.h"
#include "fastdeploy/vision/common/result.h"
namespace fastdeploy {
namespace vision {
namespace facealign {
/*! @brief PIPNet model object used when to load a PIPNet model exported by PIPNet.
*/
class FASTDEPLOY_DECL PIPNet : public FastDeployModel {
public:
/** \brief Set path of model file and the configuration of runtime.
*
* \param[in] model_file Path of model file, e.g ./pipnet.onnx
* \param[in] params_file Path of parameter file, e.g ppyoloe/model.pdiparams, if the model format is ONNX, this parameter will be ignored
* \param[in] custom_option RuntimeOption for inference, the default will use cpu, and choose the backend defined in "valid_cpu_backends"
* \param[in] model_format Model format of the loaded model, default is ONNX format
*/
PIPNet(const std::string& model_file, const std::string& params_file = "",
const RuntimeOption& custom_option = RuntimeOption(),
const ModelFormat& model_format = ModelFormat::ONNX);
std::string ModelName() const { return "PIPNet"; }
/** \brief Predict the face detection result for an input image
*
* \param[in] im The input image data, comes from cv::imread(), is a 3-D array with layout HWC, BGR format
* \param[in] result The output face detection result will be writen to this structure
* \return true if the prediction successed, otherwise false
*/
virtual bool Predict(cv::Mat* im, FaceAlignmentResult* result);
/** \brief Get the number of landmakrs
*
* \return Integer type, default num_landmarks = 19
*/
int GetNumLandmarks() {return num_landmarks_; }
/** \brief Get the mean values for normalization
*
* \return Vector of float values, default mean_vals = {0.485f, 0.456f, 0.406f}
*/
std::vector<float> GetMeanVals() { return mean_vals_; }
/** \brief Get the std values for normalization
*
* \return Vector of float values, default std_vals = {0.229f, 0.224f, 0.225f}
*/
std::vector<float> GetStdVals() { return std_vals_; }
/** \brief Get the input size of image
*
* \return Vector of int values, default {256, 256}
*/
std::vector<int> GetSize() { return size_; }
/** \brief Set the number of landmarks
*
* \param[in] num_landmarks Integer value which represents number of landmarks
*/
void SetNumLandmarks(const int& num_landmarks);
/** \brief Set the mean values for normalization
*
* \param[in] mean_vals Vector of float values whose length is equal to 3
*/
void SetMeanVals(const std::vector<float>& mean_vals) {
mean_vals_ = mean_vals;
}
/** \brief Set the std values for normalization
*
* \param[in] std_vals Vector of float values whose length is equal to 3
*/
void SetStdVals(const std::vector<float>& std_vals) { std_vals_ = std_vals; }
/** \brief Set the input size of image
*
* \param[in] size Vector of int values which represents {width, height} of image
*/
void SetSize(const std::vector<int>& size) { size_ = size; }
private:
bool Initialize();
bool Preprocess(Mat* mat, FDTensor* outputs,
std::map<std::string, std::array<int, 2>>* im_info);
bool Postprocess(std::vector<FDTensor>& infer_result,
FaceAlignmentResult* result,
const std::map<std::string, std::array<int, 2>>& im_info);
void GenerateLandmarks(std::vector<FDTensor>& infer_result,
FaceAlignmentResult* result,
float img_height, float img_width);
std::map<int, int> num_lms_map_;
std::map<int, int> max_len_map_;
std::map<int, std::vector<int>> reverse_index1_map_;
std::map<int, std::vector<int>> reverse_index2_map_;
int num_nb_;
int net_stride_;
// Now PIPNet support num_landmarks in {19, 29, 68, 98}
std::vector<int> supported_num_landmarks_;
// tuple of (width, height), default (256, 256)
std::vector<int> size_;
// Mean parameters for normalize, size should be the the same as channels,
// default mean_vals = {0.485f, 0.456f, 0.406f}
std::vector<float> mean_vals_;
// Std parameters for normalize, size should be the the same as channels,
// default std_vals = {0.229f, 0.224f, 0.225f}
std::vector<float> std_vals_;
// number of landmarks
int num_landmarks_;
};
} // namespace facealign
} // namespace vision
} // namespace fastdeploy

View File

@@ -0,0 +1,39 @@
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "fastdeploy/pybind/main.h"
namespace fastdeploy {
void BindPIPNet(pybind11::module& m) {
pybind11::class_<vision::facealign::PIPNet, FastDeployModel>(m, "PIPNet")
.def(pybind11::init<std::string, std::string, RuntimeOption,
ModelFormat>())
.def("predict",
[](vision::facealign::PIPNet& self, pybind11::array& data) {
auto mat = PyArrayToCvMat(data);
vision::FaceAlignmentResult res;
self.Predict(&mat, &res);
return res;
})
.def_property("size", &vision::facealign::PIPNet::GetSize,
&vision::facealign::PIPNet::SetSize)
.def_property("mean_vals", &vision::facealign::PIPNet::GetMeanVals,
&vision::facealign::PIPNet::SetMeanVals)
.def_property("std_vals", &vision::facealign::PIPNet::GetStdVals,
&vision::facealign::PIPNet::SetStdVals)
.def_property("num_landmarks",
&vision::facealign::PIPNet::GetNumLandmarks,
&vision::facealign::PIPNet::SetNumLandmarks);
}
} // namespace fastdeploy

View File

@@ -17,9 +17,14 @@
namespace fastdeploy { namespace fastdeploy {
void BindPFLD(pybind11::module& m); void BindPFLD(pybind11::module& m);
void BindFaceLandmark1000(pybind11::module& m);
void BindPIPNet(pybind11::module& m);
void BindFaceAlign(pybind11::module& m) { void BindFaceAlign(pybind11::module& m) {
auto facedet_module = m.def_submodule("facealign", "Face alignment models."); auto facedet_module = m.def_submodule("facealign", "Face alignment models.");
BindPFLD(facedet_module); BindPFLD(facedet_module);
BindFaceLandmark1000(facedet_module);
BindPIPNet(facedet_module);
} }
} // namespace fastdeploy } // namespace fastdeploy

View File

@@ -14,3 +14,5 @@
from __future__ import absolute_import from __future__ import absolute_import
from .contrib.pfld import PFLD from .contrib.pfld import PFLD
from .contrib.pipnet import PIPNet
from .contrib.face_landmark_1000 import FaceLandmark1000

View File

@@ -0,0 +1,68 @@
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
import logging
from .... import FastDeployModel, ModelFormat
from .... import c_lib_wrap as C
class FaceLandmark1000(FastDeployModel):
def __init__(self,
model_file,
params_file="",
runtime_option=None,
model_format=ModelFormat.ONNX):
"""Load a face alignment model exported by FaceLandmark1000.
:param model_file: (str)Path of model file, e.g ./FaceLandmark1000.onnx
:param params_file: (str)Path of parameters file, if the model_fomat is ModelFormat.ONNX, this param will be ignored, can be set as empty string
:param runtime_option: (fastdeploy.RuntimeOption)RuntimeOption for inference this model, if it's None, will use the default backend on CPU
:param model_format: (fastdeploy.ModelForamt)Model format of the loaded model, default is ONNX
"""
super(FaceLandmark1000, self).__init__(runtime_option)
assert model_format == ModelFormat.ONNX, "FaceLandmark1000 only support model format of ModelFormat.ONNX now."
self._model = C.vision.facealign.FaceLandmark1000(
model_file, params_file, self._runtime_option, model_format)
assert self.initialized, "FaceLandmark1000 initialize failed."
def predict(self, input_image):
"""Detect an input image landmarks
:param im: (numpy.ndarray)The input image data, 3-D array with layout HWC, BGR format
:return: FaceAlignmentResult
"""
return self._model.predict(input_image)
@property
def size(self):
"""
Returns the preprocess image size, default (128, 128)
"""
return self._model.size
@size.setter
def size(self, wh):
"""
Set the preprocess image size, default (128, 128)
"""
assert isinstance(wh, (list, tuple)),\
"The value to set `size` must be type of tuple or list."
assert len(wh) == 2,\
"The value to set `size` must contatins 2 elements means [width, height], but now it contains {} elements.".format(
len(wh))
self._model.size = wh

View File

@@ -0,0 +1,107 @@
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
import logging
from .... import FastDeployModel, ModelFormat
from .... import c_lib_wrap as C
class PIPNet(FastDeployModel):
def __init__(self,
model_file,
params_file="",
runtime_option=None,
model_format=ModelFormat.ONNX):
"""Load a face alignment model exported by PIPNet.
:param model_file: (str)Path of model file, e.g ./PIPNet.onnx
:param params_file: (str)Path of parameters file, if the model_fomat is ModelFormat.ONNX, this param will be ignored, can be set as empty string
:param runtime_option: (fastdeploy.RuntimeOption)RuntimeOption for inference this model, if it's None, will use the default backend on CPU
:param model_format: (fastdeploy.ModelForamt)Model format of the loaded model, default is ONNX
"""
super(PIPNet, self).__init__(runtime_option)
assert model_format == ModelFormat.ONNX, "PIPNet only support model format of ModelFormat.ONNX now."
self._model = C.vision.facealign.PIPNet(
model_file, params_file, self._runtime_option, model_format)
assert self.initialized, "PIPNet initialize failed."
def predict(self, input_image):
"""Detect an input image landmarks
:param im: (numpy.ndarray)The input image data, 3-D array with layout HWC, BGR format
:return: FaceAlignmentResult
"""
return self._model.predict(input_image)
@property
def size(self):
"""
Returns the preprocess image size, default (256, 256)
"""
return self._model.size
@property
def mean_vals(self):
"""
Returns the mean value of normlization, default mean_vals = [0.485f, 0.456f, 0.406f];
"""
return self._model.mean_vals
@property
def std_vals(self):
"""
Returns the std value of normlization, default std_vals = [0.229f, 0.224f, 0.225f];
"""
return self._model.std_vals
@property
def num_landmarks(self):
"""
Returns the number of landmarks
"""
return self._model.num_landmarks
@size.setter
def size(self, wh):
"""
Set the preprocess image size, default (256, 256)
"""
assert isinstance(wh, (list, tuple)),\
"The value to set `size` must be type of tuple or list."
assert len(wh) == 2,\
"The value to set `size` must contatins 2 elements means [width, height], but now it contains {} elements.".format(
len(wh))
self._model.size = wh
@mean_vals.setter
def mean_vals(self, value):
assert isinstance(
value, list), "The value to set `mean_vals` must be type of list."
self._model.mean_vals = value
@std_vals.setter
def std_vals(self, value):
assert isinstance(
value, list), "The value to set `std_vals` must be type of list."
self._model.std_vals = value
@num_landmarks.setter
def num_landmarks(self, value):
assert isinstance(
value, int), "The value to set `std_vals` must be type of int."
self._model.num_landmarks = value

View File

@@ -0,0 +1,43 @@
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import fastdeploy as fd
import cv2
import os
import numpy as np
def test_facealignment_pipnet():
model_url = "https://bj.bcebos.com/paddlehub/fastdeploy/FaceLandmark1000.onnx"
input_url = "https://bj.bcebos.com/paddlehub/fastdeploy/facealign_input.png"
output_url = "https://bj.bcebos.com/paddlehub/fastdeploy/tests/facelandmark1000_result_landmarks.npy"
fd.download(model_url, ".")
fd.download(input_url, ".")
fd.download(output_url, ".")
model_path = "FaceLandmark1000.onnx"
# use ORT
runtime_option = fd.RuntimeOption()
runtime_option.use_ort_backend()
model = fd.vision.facealign.FaceLandmark1000(
model_path, runtime_option=runtime_option)
# compare diff
im = cv2.imread("./facealign_input.png")
result = model.predict(im.copy())
expect = np.load("./facelandmark1000_result_landmarks.npy")
diff = np.fabs(np.array(result.landmarks) - expect)
thres = 1e-04
assert diff.max() < thres, "The diff is %f, which is bigger than %f" % (
diff.max(), thres)

View File

@@ -0,0 +1,43 @@
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import fastdeploy as fd
import cv2
import os
import numpy as np
def test_facealignment_pipnet():
model_url = "https://bj.bcebos.com/paddlehub/fastdeploy/pipnet_resnet18_10x19x32x256_aflw.onnx"
input_url = "https://bj.bcebos.com/paddlehub/fastdeploy/facealign_input.png"
output_url = "https://bj.bcebos.com/paddlehub/fastdeploy/tests/pipnet_result_landmarks.npy"
fd.download(model_url, ".")
fd.download(input_url, ".")
fd.download(output_url, ".")
model_path = "pipnet_resnet18_10x19x32x256_aflw.onnx"
# use ORT
runtime_option = fd.RuntimeOption()
runtime_option.use_ort_backend()
model = fd.vision.facealign.PIPNet(
model_path, runtime_option=runtime_option)
# compare diff
im = cv2.imread("./facealign_input.png")
result = model.predict(im.copy())
expect = np.load("./pipnet_result_landmarks.npy")
diff = np.fabs(np.array(result.landmarks) - expect)
thres = 1e-04
assert diff.max() < thres, "The diff is %f, which is bigger than %f" % (
diff.max(), thres)

View File

@@ -71,6 +71,56 @@ TEST(fastdeploy, flycv_rgb2bgr) {
check_data(reinterpret_cast<const uint8_t*>(opencv.Data()), reinterpret_cast<const uint8_t*>(flycv.Data()), opencv.Numel()); check_data(reinterpret_cast<const uint8_t*>(opencv.Data()), reinterpret_cast<const uint8_t*>(flycv.Data()), opencv.Numel());
check_type(opencv.dtype, flycv.dtype); check_type(opencv.dtype, flycv.dtype);
} }
TEST(fastdeploy, flycv_rgb2gray) {
CheckShape check_shape;
CheckData check_data;
CheckType check_type;
cv::Mat mat(64, 64, CV_8UC3);
cv::randu(mat, cv::Scalar::all(0), cv::Scalar::all(255));
cv::Mat mat1 = mat.clone();
vision::Mat mat_opencv(mat);
vision::Mat mat_flycv(mat1);
vision::RGB2GRAY::Run(&mat_opencv, vision::ProcLib::OPENCV);
vision::RGB2GRAY::Run(&mat_flycv, vision::ProcLib::FLYCV);
FDTensor opencv;
FDTensor flycv;
mat_opencv.ShareWithTensor(&opencv);
mat_flycv.ShareWithTensor(&flycv);
check_shape(opencv.shape, flycv.shape);
check_data(reinterpret_cast<const uint8_t*>(opencv.Data()), reinterpret_cast<const uint8_t*>(flycv.Data()), opencv.Numel());
check_type(opencv.dtype, flycv.dtype);
}
TEST(fastdeploy, flycv_bgr2gray) {
CheckShape check_shape;
CheckData check_data;
CheckType check_type;
cv::Mat mat(64, 64, CV_8UC3);
cv::randu(mat, cv::Scalar::all(0), cv::Scalar::all(255));
cv::Mat mat1 = mat.clone();
vision::Mat mat_opencv(mat);
vision::Mat mat_flycv(mat1);
vision::BGR2GRAY::Run(&mat_opencv, vision::ProcLib::OPENCV);
vision::BGR2GRAY::Run(&mat_flycv, vision::ProcLib::FLYCV);
FDTensor opencv;
FDTensor flycv;
mat_opencv.ShareWithTensor(&opencv);
mat_flycv.ShareWithTensor(&flycv);
check_shape(opencv.shape, flycv.shape);
check_data(reinterpret_cast<const uint8_t*>(opencv.Data()), reinterpret_cast<const uint8_t*>(flycv.Data()), opencv.Numel());
check_type(opencv.dtype, flycv.dtype);
}
#endif #endif
} // namespace fastdeploy } // namespace fastdeploy