mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-11-01 20:32:52 +08:00
Add comprehensive unit tests for limit_thinking_content_length operators (#4510)
* Initial plan * Add comprehensive unit tests for limit_thinking_content_length functions Co-authored-by: yuanlehome <23653004+yuanlehome@users.noreply.github.com> * fix (#4514) --------- Co-authored-by: copilot-swe-agent[bot] <198982749+Copilot@users.noreply.github.com> Co-authored-by: yuanlehome <23653004+yuanlehome@users.noreply.github.com> Co-authored-by: Yuanle Liu <yuanlehome@163.com>
This commit is contained in:
330
tests/operators/test_limit_thinking_content_length.py
Normal file
330
tests/operators/test_limit_thinking_content_length.py
Normal file
@@ -0,0 +1,330 @@
|
||||
# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
"""Unit tests for limit_thinking_content_length_v1 and limit_thinking_content_length_v2"""
|
||||
|
||||
import unittest
|
||||
|
||||
import paddle
|
||||
|
||||
from fastdeploy.model_executor.ops.gpu import (
|
||||
limit_thinking_content_length_v1,
|
||||
limit_thinking_content_length_v2,
|
||||
)
|
||||
|
||||
|
||||
class TestLimitThinkingContentLengthV1(unittest.TestCase):
|
||||
"""Tests for limit_thinking_content_length_v1 operator (</think> strategy)"""
|
||||
|
||||
def test_normal_thinking_phase_no_limit_reached(self):
|
||||
"""Test normal thinking phase when step < max_think_len"""
|
||||
next_tokens = paddle.to_tensor([[100], [200]], dtype="int64")
|
||||
max_think_lens = paddle.to_tensor([10, 15], dtype="int32")
|
||||
step_idx = paddle.to_tensor([[5], [8]], dtype="int64")
|
||||
limit_think_status = paddle.to_tensor([0, 0], dtype="int32")
|
||||
think_end_id = 999
|
||||
|
||||
# Run operator
|
||||
limit_thinking_content_length_v1(next_tokens, max_think_lens, step_idx, limit_think_status, think_end_id)
|
||||
|
||||
# Verify: tokens unchanged, status unchanged
|
||||
assert next_tokens.numpy()[0, 0] == 100
|
||||
assert next_tokens.numpy()[1, 0] == 200
|
||||
assert limit_think_status.numpy()[0] == 0
|
||||
assert limit_think_status.numpy()[1] == 0
|
||||
|
||||
def test_force_truncation_when_max_think_len_exceeded(self):
|
||||
"""Test force truncation when step >= max_think_len"""
|
||||
next_tokens = paddle.to_tensor([[100], [200]], dtype="int64")
|
||||
max_think_lens = paddle.to_tensor([5, 8], dtype="int32")
|
||||
step_idx = paddle.to_tensor([[5], [10]], dtype="int64") # Both exceed or equal limit
|
||||
limit_think_status = paddle.to_tensor([0, 0], dtype="int32")
|
||||
think_end_id = 999
|
||||
|
||||
# Run operator
|
||||
limit_thinking_content_length_v1(next_tokens, max_think_lens, step_idx, limit_think_status, think_end_id)
|
||||
|
||||
# Verify: tokens replaced with think_end_id, status changed to 2
|
||||
assert next_tokens.numpy()[0, 0] == 999 # Replaced
|
||||
assert next_tokens.numpy()[1, 0] == 999 # Replaced
|
||||
assert limit_think_status.numpy()[0] == 2 # Status updated
|
||||
assert limit_think_status.numpy()[1] == 2 # Status updated
|
||||
|
||||
def test_model_naturally_generates_think_end_id(self):
|
||||
"""Test when model naturally generates think_end_id"""
|
||||
next_tokens = paddle.to_tensor([[999]], dtype="int64") # Model generated think_end_id
|
||||
max_think_lens = paddle.to_tensor([10], dtype="int32")
|
||||
step_idx = paddle.to_tensor([[3]], dtype="int64") # Still within limit
|
||||
limit_think_status = paddle.to_tensor([0], dtype="int32")
|
||||
think_end_id = 999
|
||||
|
||||
# Run operator
|
||||
limit_thinking_content_length_v1(next_tokens, max_think_lens, step_idx, limit_think_status, think_end_id)
|
||||
|
||||
# Verify: token unchanged (already think_end_id), status changed to 2
|
||||
assert next_tokens.numpy()[0, 0] == 999
|
||||
assert limit_think_status.numpy()[0] == 2 # Move to response phase
|
||||
|
||||
def test_status_1_to_status_2_transition(self):
|
||||
"""Test transition from status 1 (injected) to status 2 (confirmed)"""
|
||||
next_tokens = paddle.to_tensor([[999]], dtype="int64") # think_end_id from previous injection
|
||||
max_think_lens = paddle.to_tensor([5], dtype="int32")
|
||||
step_idx = paddle.to_tensor([[6]], dtype="int64")
|
||||
limit_think_status = paddle.to_tensor([1], dtype="int32") # Status is 1
|
||||
think_end_id = 999
|
||||
|
||||
# Run operator
|
||||
limit_thinking_content_length_v1(next_tokens, max_think_lens, step_idx, limit_think_status, think_end_id)
|
||||
|
||||
# Verify: status changed to 2
|
||||
assert limit_think_status.numpy()[0] == 2
|
||||
|
||||
def test_disabled_feature_negative_max_think_len(self):
|
||||
"""Test that negative max_think_len disables the feature"""
|
||||
next_tokens = paddle.to_tensor([[100]], dtype="int64")
|
||||
max_think_lens = paddle.to_tensor([-1], dtype="int32") # Disabled
|
||||
step_idx = paddle.to_tensor([[100]], dtype="int64") # Would exceed limit if enabled
|
||||
limit_think_status = paddle.to_tensor([0], dtype="int32")
|
||||
think_end_id = 999
|
||||
|
||||
# Run operator
|
||||
limit_thinking_content_length_v1(next_tokens, max_think_lens, step_idx, limit_think_status, think_end_id)
|
||||
|
||||
# Verify: nothing changed
|
||||
assert next_tokens.numpy()[0, 0] == 100
|
||||
assert limit_think_status.numpy()[0] == 0
|
||||
|
||||
def test_already_in_response_phase_status_2(self):
|
||||
"""Test that status 2 (response phase) is terminal"""
|
||||
next_tokens = paddle.to_tensor([[100]], dtype="int64")
|
||||
max_think_lens = paddle.to_tensor([5], dtype="int32")
|
||||
step_idx = paddle.to_tensor([[10]], dtype="int64")
|
||||
limit_think_status = paddle.to_tensor([2], dtype="int32") # Already in response phase
|
||||
think_end_id = 999
|
||||
|
||||
# Run operator
|
||||
limit_thinking_content_length_v1(next_tokens, max_think_lens, step_idx, limit_think_status, think_end_id)
|
||||
|
||||
# Verify: nothing changed
|
||||
assert next_tokens.numpy()[0, 0] == 100
|
||||
assert limit_think_status.numpy()[0] == 2
|
||||
|
||||
def test_mixed_batch(self):
|
||||
"""Test batch with different sequences in different states"""
|
||||
next_tokens = paddle.to_tensor([[100], [200], [999], [300]], dtype="int64")
|
||||
max_think_lens = paddle.to_tensor([10, 5, 8, -1], dtype="int32")
|
||||
step_idx = paddle.to_tensor([[3], [5], [4], [100]], dtype="int64")
|
||||
limit_think_status = paddle.to_tensor([0, 0, 0, 0], dtype="int32")
|
||||
think_end_id = 999
|
||||
|
||||
# Run operator
|
||||
limit_thinking_content_length_v1(next_tokens, max_think_lens, step_idx, limit_think_status, think_end_id)
|
||||
|
||||
# Verify each sequence
|
||||
# Seq 0: step 3 < max 10, status 0, token unchanged
|
||||
assert next_tokens.numpy()[0, 0] == 100
|
||||
assert limit_think_status.numpy()[0] == 0
|
||||
|
||||
# Seq 1: step 5 >= max 5, force inject think_end_id, status -> 2
|
||||
assert next_tokens.numpy()[1, 0] == 999
|
||||
assert limit_think_status.numpy()[1] == 2
|
||||
|
||||
# Seq 2: step 4 < max 8, but token is think_end_id, status -> 2
|
||||
assert next_tokens.numpy()[2, 0] == 999
|
||||
assert limit_think_status.numpy()[2] == 2
|
||||
|
||||
# Seq 3: disabled (max -1), unchanged
|
||||
assert next_tokens.numpy()[3, 0] == 300
|
||||
assert limit_think_status.numpy()[3] == 0
|
||||
|
||||
|
||||
class TestLimitThinkingContentLengthV2(unittest.TestCase):
|
||||
"""Tests for limit_thinking_content_length_v2 operator (\n</think>\n\n strategy)"""
|
||||
|
||||
def test_normal_thinking_phase_no_limit_reached(self):
|
||||
"""Test normal thinking phase when step < max_think_len"""
|
||||
next_tokens = paddle.to_tensor([[100], [200]], dtype="int64")
|
||||
max_think_lens = paddle.to_tensor([10, 15], dtype="int32")
|
||||
step_idx = paddle.to_tensor([[5], [8]], dtype="int64")
|
||||
limit_think_status = paddle.to_tensor([0, 0], dtype="int32")
|
||||
think_end_id = 999
|
||||
line_break_id = 888
|
||||
|
||||
# Run operator
|
||||
limit_thinking_content_length_v2(
|
||||
next_tokens, max_think_lens, step_idx, limit_think_status, think_end_id, line_break_id
|
||||
)
|
||||
|
||||
# Verify: tokens unchanged, status unchanged
|
||||
assert next_tokens.numpy()[0, 0] == 100
|
||||
assert next_tokens.numpy()[1, 0] == 200
|
||||
assert limit_think_status.numpy()[0] == 0
|
||||
assert limit_think_status.numpy()[1] == 0
|
||||
|
||||
def test_force_truncation_sequence_injection(self):
|
||||
"""Test force truncation with \n</think>\n\n sequence injection"""
|
||||
# Test step == max_think_len (inject first \n)
|
||||
next_tokens = paddle.to_tensor([[100]], dtype="int64")
|
||||
max_think_lens = paddle.to_tensor([5], dtype="int32")
|
||||
step_idx = paddle.to_tensor([[5]], dtype="int64")
|
||||
limit_think_status = paddle.to_tensor([0], dtype="int32")
|
||||
think_end_id = 999
|
||||
line_break_id = 888
|
||||
|
||||
limit_thinking_content_length_v2(
|
||||
next_tokens, max_think_lens, step_idx, limit_think_status, think_end_id, line_break_id
|
||||
)
|
||||
assert next_tokens.numpy()[0, 0] == 888 # line_break_id
|
||||
assert limit_think_status.numpy()[0] == 1
|
||||
|
||||
# Test step == max_think_len + 1 (inject </think>)
|
||||
next_tokens = paddle.to_tensor([[100]], dtype="int64")
|
||||
step_idx = paddle.to_tensor([[6]], dtype="int64")
|
||||
limit_think_status = paddle.to_tensor([1], dtype="int32")
|
||||
|
||||
limit_thinking_content_length_v2(
|
||||
next_tokens, max_think_lens, step_idx, limit_think_status, think_end_id, line_break_id
|
||||
)
|
||||
assert next_tokens.numpy()[0, 0] == 999 # think_end_id
|
||||
assert limit_think_status.numpy()[0] == 1
|
||||
|
||||
# Test step == max_think_len + 2 (inject second \n)
|
||||
next_tokens = paddle.to_tensor([[100]], dtype="int64")
|
||||
step_idx = paddle.to_tensor([[7]], dtype="int64")
|
||||
limit_think_status = paddle.to_tensor([1], dtype="int32")
|
||||
|
||||
limit_thinking_content_length_v2(
|
||||
next_tokens, max_think_lens, step_idx, limit_think_status, think_end_id, line_break_id
|
||||
)
|
||||
assert next_tokens.numpy()[0, 0] == 888 # line_break_id
|
||||
assert limit_think_status.numpy()[0] == 1
|
||||
|
||||
# Test step == max_think_len + 3 (inject third \n and finish)
|
||||
next_tokens = paddle.to_tensor([[100]], dtype="int64")
|
||||
step_idx = paddle.to_tensor([[8]], dtype="int64")
|
||||
limit_think_status = paddle.to_tensor([1], dtype="int32")
|
||||
|
||||
limit_thinking_content_length_v2(
|
||||
next_tokens, max_think_lens, step_idx, limit_think_status, think_end_id, line_break_id
|
||||
)
|
||||
assert next_tokens.numpy()[0, 0] == 888 # line_break_id
|
||||
assert limit_think_status.numpy()[0] == 3 # Move to status 3
|
||||
|
||||
def test_model_naturally_generates_think_end_id(self):
|
||||
"""Test when model naturally generates think_end_id"""
|
||||
next_tokens = paddle.to_tensor([[999]], dtype="int64")
|
||||
max_think_lens = paddle.to_tensor([10], dtype="int32")
|
||||
step_idx = paddle.to_tensor([[3]], dtype="int64")
|
||||
limit_think_status = paddle.to_tensor([0], dtype="int32")
|
||||
think_end_id = 999
|
||||
line_break_id = 888
|
||||
|
||||
# Run operator
|
||||
limit_thinking_content_length_v2(
|
||||
next_tokens, max_think_lens, step_idx, limit_think_status, think_end_id, line_break_id
|
||||
)
|
||||
|
||||
# Verify: status changed to 3 (response phase)
|
||||
assert next_tokens.numpy()[0, 0] == 999
|
||||
assert limit_think_status.numpy()[0] == 3
|
||||
|
||||
def test_status_2_to_status_3_transition(self):
|
||||
"""Test transition from status 2 (replacement done) to status 3 (thinking ended)"""
|
||||
next_tokens = paddle.to_tensor([[100]], dtype="int64")
|
||||
max_think_lens = paddle.to_tensor([5], dtype="int32")
|
||||
step_idx = paddle.to_tensor([[9]], dtype="int64")
|
||||
limit_think_status = paddle.to_tensor([2], dtype="int32")
|
||||
think_end_id = 999
|
||||
line_break_id = 888
|
||||
|
||||
# Run operator
|
||||
limit_thinking_content_length_v2(
|
||||
next_tokens, max_think_lens, step_idx, limit_think_status, think_end_id, line_break_id
|
||||
)
|
||||
|
||||
# Verify: status changed to 3
|
||||
assert limit_think_status.numpy()[0] == 3
|
||||
|
||||
def test_disabled_feature_negative_max_think_len(self):
|
||||
"""Test that negative max_think_len disables the feature"""
|
||||
next_tokens = paddle.to_tensor([[100]], dtype="int64")
|
||||
max_think_lens = paddle.to_tensor([-1], dtype="int32")
|
||||
step_idx = paddle.to_tensor([[100]], dtype="int64")
|
||||
limit_think_status = paddle.to_tensor([0], dtype="int32")
|
||||
think_end_id = 999
|
||||
line_break_id = 888
|
||||
|
||||
# Run operator
|
||||
limit_thinking_content_length_v2(
|
||||
next_tokens, max_think_lens, step_idx, limit_think_status, think_end_id, line_break_id
|
||||
)
|
||||
|
||||
# Verify: nothing changed
|
||||
assert next_tokens.numpy()[0, 0] == 100
|
||||
assert limit_think_status.numpy()[0] == 0
|
||||
|
||||
def test_already_in_response_phase_status_3(self):
|
||||
"""Test that status 3 (response phase) is terminal"""
|
||||
next_tokens = paddle.to_tensor([[100]], dtype="int64")
|
||||
max_think_lens = paddle.to_tensor([5], dtype="int32")
|
||||
step_idx = paddle.to_tensor([[10]], dtype="int64")
|
||||
limit_think_status = paddle.to_tensor([3], dtype="int32")
|
||||
think_end_id = 999
|
||||
line_break_id = 888
|
||||
|
||||
# Run operator
|
||||
limit_thinking_content_length_v2(
|
||||
next_tokens, max_think_lens, step_idx, limit_think_status, think_end_id, line_break_id
|
||||
)
|
||||
|
||||
# Verify: nothing changed
|
||||
assert next_tokens.numpy()[0, 0] == 100
|
||||
assert limit_think_status.numpy()[0] == 3
|
||||
|
||||
def test_mixed_batch_various_states(self):
|
||||
"""Test batch with sequences in different states"""
|
||||
next_tokens = paddle.to_tensor([[100], [200], [999], [300], [400]], dtype="int64")
|
||||
max_think_lens = paddle.to_tensor([10, 5, 8, -1, 6], dtype="int32")
|
||||
step_idx = paddle.to_tensor([[3], [5], [4], [100], [9]], dtype="int64")
|
||||
limit_think_status = paddle.to_tensor([0, 0, 0, 0, 2], dtype="int32")
|
||||
think_end_id = 999
|
||||
line_break_id = 888
|
||||
|
||||
# Run operator
|
||||
limit_thinking_content_length_v2(
|
||||
next_tokens, max_think_lens, step_idx, limit_think_status, think_end_id, line_break_id
|
||||
)
|
||||
|
||||
# Seq 0: step 3 < max 10, status 0, unchanged
|
||||
assert next_tokens.numpy()[0, 0] == 100
|
||||
assert limit_think_status.numpy()[0] == 0
|
||||
|
||||
# Seq 1: step 5 == max 5, inject line_break_id, status -> 1
|
||||
assert next_tokens.numpy()[1, 0] == 888
|
||||
assert limit_think_status.numpy()[1] == 1
|
||||
|
||||
# Seq 2: token is think_end_id, status 0 -> 3
|
||||
assert next_tokens.numpy()[2, 0] == 999
|
||||
assert limit_think_status.numpy()[2] == 3
|
||||
|
||||
# Seq 3: disabled, unchanged
|
||||
assert next_tokens.numpy()[3, 0] == 300
|
||||
assert limit_think_status.numpy()[3] == 0
|
||||
|
||||
# Seq 4: status 2 (replacement done), transition to 3
|
||||
assert limit_think_status.numpy()[4] == 3
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
unittest.main()
|
||||
547
tests/operators/test_speculate_limit_thinking_content_length.py
Normal file
547
tests/operators/test_speculate_limit_thinking_content_length.py
Normal file
@@ -0,0 +1,547 @@
|
||||
# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
"""Unit tests for speculate_limit_thinking_content_length_v1 and speculate_limit_thinking_content_length_v2"""
|
||||
|
||||
import unittest
|
||||
|
||||
import paddle
|
||||
|
||||
from fastdeploy.model_executor.ops.gpu import (
|
||||
speculate_limit_thinking_content_length_v1,
|
||||
speculate_limit_thinking_content_length_v2,
|
||||
)
|
||||
|
||||
|
||||
class TestSpeculateLimitThinkingContentLengthV1(unittest.TestCase):
|
||||
"""Tests for speculate_limit_thinking_content_length_v1 operator (</think> strategy with speculative decoding)"""
|
||||
|
||||
def test_normal_thinking_phase_no_truncation(self):
|
||||
"""Test normal thinking phase when all tokens are within limit"""
|
||||
# Batch 0 accepts 3 tokens, Batch 1 accepts 2 tokens
|
||||
next_tokens = paddle.to_tensor([[100, 101, 102], [200, 201, 0]], dtype="int64")
|
||||
max_think_lens = paddle.to_tensor([10, 15], dtype="int32")
|
||||
# step_idx represents current step after accepting tokens
|
||||
step_idx = paddle.to_tensor([5, 8], dtype="int64")
|
||||
limit_think_status = paddle.to_tensor([0, 0], dtype="int32")
|
||||
accept_num = paddle.to_tensor([3, 2], dtype="int32")
|
||||
seq_lens_decoder = paddle.to_tensor([5, 8], dtype="int32")
|
||||
think_end_id = 999
|
||||
|
||||
# Run operator
|
||||
speculate_limit_thinking_content_length_v1(
|
||||
next_tokens,
|
||||
max_think_lens,
|
||||
step_idx,
|
||||
limit_think_status,
|
||||
accept_num,
|
||||
seq_lens_decoder,
|
||||
think_end_id,
|
||||
)
|
||||
|
||||
# Verify: tokens unchanged, accept_num unchanged, status unchanged
|
||||
assert next_tokens.numpy()[0, 0] == 100
|
||||
assert next_tokens.numpy()[0, 1] == 101
|
||||
assert next_tokens.numpy()[0, 2] == 102
|
||||
assert accept_num.numpy()[0] == 3
|
||||
assert accept_num.numpy()[1] == 2
|
||||
assert limit_think_status.numpy()[0] == 0
|
||||
assert limit_think_status.numpy()[1] == 0
|
||||
assert step_idx.numpy()[0] == 5
|
||||
assert step_idx.numpy()[1] == 8
|
||||
|
||||
def test_force_truncation_when_exceeding_limit(self):
|
||||
"""Test force truncation when tokens exceed max_think_len"""
|
||||
# Accept 4 tokens, but will exceed limit at 3rd token
|
||||
next_tokens = paddle.to_tensor([[100, 101, 102, 103]], dtype="int64")
|
||||
max_think_lens = paddle.to_tensor([10], dtype="int32")
|
||||
# Current step is 12 after accepting 4 tokens, so base step is 12-4+1=9
|
||||
# Token 0 at step 9, token 1 at step 10 (>= max_think_len=10), should be truncated
|
||||
step_idx = paddle.to_tensor([12], dtype="int64")
|
||||
limit_think_status = paddle.to_tensor([0], dtype="int32")
|
||||
accept_num = paddle.to_tensor([4], dtype="int32")
|
||||
seq_lens_decoder = paddle.to_tensor([12], dtype="int32")
|
||||
think_end_id = 999
|
||||
|
||||
# Run operator
|
||||
speculate_limit_thinking_content_length_v1(
|
||||
next_tokens,
|
||||
max_think_lens,
|
||||
step_idx,
|
||||
limit_think_status,
|
||||
accept_num,
|
||||
seq_lens_decoder,
|
||||
think_end_id,
|
||||
)
|
||||
|
||||
# Verify: token at position 1 should be replaced with think_end_id
|
||||
# accept_num should be 2 (truncated after 2nd token which triggers the condition)
|
||||
assert next_tokens.numpy()[0, 0] == 100 # Token at step 9
|
||||
assert next_tokens.numpy()[0, 1] == 999 # Token at step 10, replaced with think_end_id
|
||||
assert accept_num.numpy()[0] == 2 # Only accept first 2 tokens
|
||||
assert limit_think_status.numpy()[0] == 2 # Status updated to 2
|
||||
# step_idx and seq_lens_decoder should be adjusted
|
||||
assert step_idx.numpy()[0] == 10 # 12 - (4-2) = 10
|
||||
assert seq_lens_decoder.numpy()[0] == 10 # 12 - (4-2) = 10
|
||||
|
||||
def test_model_naturally_generates_think_end_id(self):
|
||||
"""Test when model naturally generates think_end_id in accepted tokens"""
|
||||
next_tokens = paddle.to_tensor([[100, 999, 102]], dtype="int64")
|
||||
max_think_lens = paddle.to_tensor([20], dtype="int32")
|
||||
step_idx = paddle.to_tensor([5], dtype="int64") # step 3-5
|
||||
limit_think_status = paddle.to_tensor([0], dtype="int32")
|
||||
accept_num = paddle.to_tensor([3], dtype="int32")
|
||||
seq_lens_decoder = paddle.to_tensor([5], dtype="int32")
|
||||
think_end_id = 999
|
||||
|
||||
# Run operator
|
||||
speculate_limit_thinking_content_length_v1(
|
||||
next_tokens,
|
||||
max_think_lens,
|
||||
step_idx,
|
||||
limit_think_status,
|
||||
accept_num,
|
||||
seq_lens_decoder,
|
||||
think_end_id,
|
||||
)
|
||||
|
||||
# Verify: status changed to 2, tokens processed normally
|
||||
assert next_tokens.numpy()[0, 1] == 999
|
||||
assert limit_think_status.numpy()[0] == 2 # Thinking ended
|
||||
assert accept_num.numpy()[0] == 3 # All tokens accepted
|
||||
|
||||
def test_disabled_feature_negative_max_think_len(self):
|
||||
"""Test that negative max_think_len disables the feature"""
|
||||
next_tokens = paddle.to_tensor([[100, 101, 102]], dtype="int64")
|
||||
max_think_lens = paddle.to_tensor([-1], dtype="int32") # Disabled
|
||||
step_idx = paddle.to_tensor([100], dtype="int64")
|
||||
limit_think_status = paddle.to_tensor([0], dtype="int32")
|
||||
accept_num = paddle.to_tensor([3], dtype="int32")
|
||||
seq_lens_decoder = paddle.to_tensor([100], dtype="int32")
|
||||
think_end_id = 999
|
||||
|
||||
# Run operator
|
||||
speculate_limit_thinking_content_length_v1(
|
||||
next_tokens,
|
||||
max_think_lens,
|
||||
step_idx,
|
||||
limit_think_status,
|
||||
accept_num,
|
||||
seq_lens_decoder,
|
||||
think_end_id,
|
||||
)
|
||||
|
||||
# Verify: nothing changed
|
||||
assert next_tokens.numpy()[0, 0] == 100
|
||||
assert accept_num.numpy()[0] == 3
|
||||
assert limit_think_status.numpy()[0] == 0
|
||||
|
||||
def test_zero_accept_num_early_return(self):
|
||||
"""Test early return when accept_num is 0"""
|
||||
next_tokens = paddle.to_tensor([[100, 101]], dtype="int64")
|
||||
max_think_lens = paddle.to_tensor([5], dtype="int32")
|
||||
step_idx = paddle.to_tensor([10], dtype="int64")
|
||||
limit_think_status = paddle.to_tensor([0], dtype="int32")
|
||||
accept_num = paddle.to_tensor([0], dtype="int32") # No tokens accepted
|
||||
seq_lens_decoder = paddle.to_tensor([10], dtype="int32")
|
||||
think_end_id = 999
|
||||
|
||||
# Run operator
|
||||
speculate_limit_thinking_content_length_v1(
|
||||
next_tokens,
|
||||
max_think_lens,
|
||||
step_idx,
|
||||
limit_think_status,
|
||||
accept_num,
|
||||
seq_lens_decoder,
|
||||
think_end_id,
|
||||
)
|
||||
|
||||
# Verify: nothing changed (early return)
|
||||
assert accept_num.numpy()[0] == 0
|
||||
assert limit_think_status.numpy()[0] == 0
|
||||
|
||||
def test_already_in_response_phase_status_3(self):
|
||||
"""Test that status 3 is terminal (note: v1 uses status 2 as terminal in comment, but code shows 3)"""
|
||||
next_tokens = paddle.to_tensor([[100, 101]], dtype="int64")
|
||||
max_think_lens = paddle.to_tensor([5], dtype="int32")
|
||||
step_idx = paddle.to_tensor([10], dtype="int64")
|
||||
limit_think_status = paddle.to_tensor([3], dtype="int32") # Terminal status
|
||||
accept_num = paddle.to_tensor([2], dtype="int32")
|
||||
seq_lens_decoder = paddle.to_tensor([10], dtype="int32")
|
||||
think_end_id = 999
|
||||
|
||||
# Run operator
|
||||
speculate_limit_thinking_content_length_v1(
|
||||
next_tokens,
|
||||
max_think_lens,
|
||||
step_idx,
|
||||
limit_think_status,
|
||||
accept_num,
|
||||
seq_lens_decoder,
|
||||
think_end_id,
|
||||
)
|
||||
|
||||
# Verify: early return, nothing changed
|
||||
assert limit_think_status.numpy()[0] == 3
|
||||
|
||||
def test_status_transition_from_0_to_1_to_2(self):
|
||||
"""Test status transition: 0 (thinking) -> 1 (injected) -> 2 (ended)"""
|
||||
# First call: inject think_end_id due to exceeding limit
|
||||
next_tokens = paddle.to_tensor([[100, 101]], dtype="int64")
|
||||
max_think_lens = paddle.to_tensor([9], dtype="int32")
|
||||
step_idx = paddle.to_tensor([9], dtype="int64") # base step = 9-2+1 = 8
|
||||
limit_think_status = paddle.to_tensor([0], dtype="int32")
|
||||
accept_num = paddle.to_tensor([2], dtype="int32")
|
||||
seq_lens_decoder = paddle.to_tensor([9], dtype="int32")
|
||||
think_end_id = 999
|
||||
|
||||
speculate_limit_thinking_content_length_v1(
|
||||
next_tokens,
|
||||
max_think_lens,
|
||||
step_idx,
|
||||
limit_think_status,
|
||||
accept_num,
|
||||
seq_lens_decoder,
|
||||
think_end_id,
|
||||
)
|
||||
|
||||
# First token at step 8 is OK, second token at step 9 >= 8, so gets replaced
|
||||
assert next_tokens.numpy()[0, 0] == 100
|
||||
assert next_tokens.numpy()[0, 1] == 999 # Replaced
|
||||
assert limit_think_status.numpy()[0] == 2
|
||||
assert accept_num.numpy()[0] == 2
|
||||
|
||||
def test_mixed_batch_with_different_states(self):
|
||||
"""Test batch with different sequences in various states"""
|
||||
next_tokens = paddle.to_tensor([[100, 101, 102], [200, 999, 202], [300, 301, 0]], dtype="int64")
|
||||
max_think_lens = paddle.to_tensor([10, 15, -1], dtype="int32")
|
||||
step_idx = paddle.to_tensor([6, 8, 50], dtype="int64")
|
||||
limit_think_status = paddle.to_tensor([0, 0, 0], dtype="int32")
|
||||
accept_num = paddle.to_tensor([3, 3, 2], dtype="int32")
|
||||
seq_lens_decoder = paddle.to_tensor([6, 8, 50], dtype="int32")
|
||||
think_end_id = 999
|
||||
|
||||
# Run operator
|
||||
speculate_limit_thinking_content_length_v1(
|
||||
next_tokens,
|
||||
max_think_lens,
|
||||
step_idx,
|
||||
limit_think_status,
|
||||
accept_num,
|
||||
seq_lens_decoder,
|
||||
think_end_id,
|
||||
)
|
||||
|
||||
# Seq 0: all tokens within limit, unchanged
|
||||
assert limit_think_status.numpy()[0] == 0
|
||||
assert accept_num.numpy()[0] == 3
|
||||
|
||||
# Seq 1: second token is think_end_id, status -> 2
|
||||
assert limit_think_status.numpy()[1] == 2
|
||||
assert accept_num.numpy()[1] == 3
|
||||
|
||||
# Seq 2: disabled, unchanged
|
||||
assert limit_think_status.numpy()[2] == 0
|
||||
assert accept_num.numpy()[2] == 2
|
||||
|
||||
|
||||
class TestSpeculateLimitThinkingContentLengthV2(unittest.TestCase):
|
||||
"""Tests for speculate_limit_thinking_content_length_v2 operator.
|
||||
|
||||
Tests the \\n</think>\\n\\n strategy with speculative decoding.
|
||||
"""
|
||||
|
||||
def test_normal_thinking_phase_no_truncation(self):
|
||||
"""Test normal thinking phase when all tokens are within limit"""
|
||||
next_tokens = paddle.to_tensor([[100, 101, 102], [200, 201, 0]], dtype="int64")
|
||||
max_think_lens = paddle.to_tensor([10, 15], dtype="int32")
|
||||
step_idx = paddle.to_tensor([5, 8], dtype="int64")
|
||||
limit_think_status = paddle.to_tensor([0, 0], dtype="int32")
|
||||
accept_num = paddle.to_tensor([3, 2], dtype="int32")
|
||||
seq_lens_decoder = paddle.to_tensor([5, 8], dtype="int32")
|
||||
think_end_id = 999
|
||||
line_break_id = 888
|
||||
|
||||
# Run operator
|
||||
speculate_limit_thinking_content_length_v2(
|
||||
next_tokens,
|
||||
max_think_lens,
|
||||
step_idx,
|
||||
limit_think_status,
|
||||
accept_num,
|
||||
seq_lens_decoder,
|
||||
think_end_id,
|
||||
line_break_id,
|
||||
)
|
||||
|
||||
# Verify: unchanged
|
||||
assert next_tokens.numpy()[0, 0] == 100
|
||||
assert accept_num.numpy()[0] == 3
|
||||
assert limit_think_status.numpy()[0] == 0
|
||||
|
||||
def test_force_truncation_with_sequence_injection(self):
|
||||
"""Test force truncation with \n</think>\n\n sequence injection"""
|
||||
# Test when multiple tokens in batch trigger different injections
|
||||
next_tokens = paddle.to_tensor([[100, 101, 102, 103, 104]], dtype="int64")
|
||||
max_think_lens = paddle.to_tensor([8], dtype="int32")
|
||||
# step_idx = 12, accept_num = 5, base_step = 12-5+1 = 8
|
||||
# Token 0 at step 8 (== max 8): inject line_break
|
||||
step_idx = paddle.to_tensor([12], dtype="int64")
|
||||
limit_think_status = paddle.to_tensor([0], dtype="int32")
|
||||
accept_num = paddle.to_tensor([5], dtype="int32")
|
||||
seq_lens_decoder = paddle.to_tensor([12], dtype="int32")
|
||||
think_end_id = 999
|
||||
line_break_id = 888
|
||||
|
||||
# Run operator
|
||||
speculate_limit_thinking_content_length_v2(
|
||||
next_tokens,
|
||||
max_think_lens,
|
||||
step_idx,
|
||||
limit_think_status,
|
||||
accept_num,
|
||||
seq_lens_decoder,
|
||||
think_end_id,
|
||||
line_break_id,
|
||||
)
|
||||
|
||||
# Token at step 8 (== max 8) should be replaced with line_break_id
|
||||
assert next_tokens.numpy()[0, 0] == 888 # line_break_id
|
||||
assert limit_think_status.numpy()[0] == 1
|
||||
assert accept_num.numpy()[0] == 1 # Truncated after 1st token
|
||||
assert step_idx.numpy()[0] == 8 # 12 - (5-1)
|
||||
assert seq_lens_decoder.numpy()[0] == 8
|
||||
|
||||
def test_injection_sequence_steps(self):
|
||||
"""Test each step of the injection sequence: \n, </think>, \n, \n"""
|
||||
max_think_lens = paddle.to_tensor([5], dtype="int32")
|
||||
think_end_id = 999
|
||||
line_break_id = 888
|
||||
|
||||
# Step 1: at max_think_len, inject first \n
|
||||
next_tokens = paddle.to_tensor([[100]], dtype="int64")
|
||||
step_idx = paddle.to_tensor([5], dtype="int64") # base_step = 5-1+1 = 5
|
||||
limit_think_status = paddle.to_tensor([0], dtype="int32")
|
||||
accept_num = paddle.to_tensor([1], dtype="int32")
|
||||
seq_lens_decoder = paddle.to_tensor([5], dtype="int32")
|
||||
|
||||
speculate_limit_thinking_content_length_v2(
|
||||
next_tokens,
|
||||
max_think_lens,
|
||||
step_idx,
|
||||
limit_think_status,
|
||||
accept_num,
|
||||
seq_lens_decoder,
|
||||
think_end_id,
|
||||
line_break_id,
|
||||
)
|
||||
assert next_tokens.numpy()[0, 0] == 888
|
||||
assert limit_think_status.numpy()[0] == 1
|
||||
|
||||
# Step 2: at max_think_len+1, inject </think>
|
||||
next_tokens = paddle.to_tensor([[200]], dtype="int64")
|
||||
step_idx = paddle.to_tensor([6], dtype="int64") # base_step = 6
|
||||
limit_think_status = paddle.to_tensor([1], dtype="int32")
|
||||
accept_num = paddle.to_tensor([1], dtype="int32")
|
||||
seq_lens_decoder = paddle.to_tensor([6], dtype="int32")
|
||||
|
||||
speculate_limit_thinking_content_length_v2(
|
||||
next_tokens,
|
||||
max_think_lens,
|
||||
step_idx,
|
||||
limit_think_status,
|
||||
accept_num,
|
||||
seq_lens_decoder,
|
||||
think_end_id,
|
||||
line_break_id,
|
||||
)
|
||||
assert next_tokens.numpy()[0, 0] == 999
|
||||
assert limit_think_status.numpy()[0] == 1
|
||||
|
||||
# Step 3: at max_think_len+2, inject second \n
|
||||
next_tokens = paddle.to_tensor([[300]], dtype="int64")
|
||||
step_idx = paddle.to_tensor([7], dtype="int64")
|
||||
limit_think_status = paddle.to_tensor([1], dtype="int32")
|
||||
accept_num = paddle.to_tensor([1], dtype="int32")
|
||||
seq_lens_decoder = paddle.to_tensor([7], dtype="int32")
|
||||
|
||||
speculate_limit_thinking_content_length_v2(
|
||||
next_tokens,
|
||||
max_think_lens,
|
||||
step_idx,
|
||||
limit_think_status,
|
||||
accept_num,
|
||||
seq_lens_decoder,
|
||||
think_end_id,
|
||||
line_break_id,
|
||||
)
|
||||
assert next_tokens.numpy()[0, 0] == 888
|
||||
assert limit_think_status.numpy()[0] == 1
|
||||
|
||||
# Step 4: at max_think_len+3, inject third \n and move to status 3
|
||||
next_tokens = paddle.to_tensor([[400]], dtype="int64")
|
||||
step_idx = paddle.to_tensor([8], dtype="int64")
|
||||
limit_think_status = paddle.to_tensor([1], dtype="int32")
|
||||
accept_num = paddle.to_tensor([1], dtype="int32")
|
||||
seq_lens_decoder = paddle.to_tensor([8], dtype="int32")
|
||||
|
||||
speculate_limit_thinking_content_length_v2(
|
||||
next_tokens,
|
||||
max_think_lens,
|
||||
step_idx,
|
||||
limit_think_status,
|
||||
accept_num,
|
||||
seq_lens_decoder,
|
||||
think_end_id,
|
||||
line_break_id,
|
||||
)
|
||||
assert next_tokens.numpy()[0, 0] == 888
|
||||
assert limit_think_status.numpy()[0] == 3
|
||||
|
||||
def test_model_naturally_generates_think_end_id(self):
|
||||
"""Test when model naturally generates think_end_id"""
|
||||
next_tokens = paddle.to_tensor([[100, 999, 102]], dtype="int64")
|
||||
max_think_lens = paddle.to_tensor([20], dtype="int32")
|
||||
step_idx = paddle.to_tensor([5], dtype="int64")
|
||||
limit_think_status = paddle.to_tensor([0], dtype="int32")
|
||||
accept_num = paddle.to_tensor([3], dtype="int32")
|
||||
seq_lens_decoder = paddle.to_tensor([5], dtype="int32")
|
||||
think_end_id = 999
|
||||
line_break_id = 888
|
||||
|
||||
# Run operator
|
||||
speculate_limit_thinking_content_length_v2(
|
||||
next_tokens,
|
||||
max_think_lens,
|
||||
step_idx,
|
||||
limit_think_status,
|
||||
accept_num,
|
||||
seq_lens_decoder,
|
||||
think_end_id,
|
||||
line_break_id,
|
||||
)
|
||||
|
||||
# Verify: status changed to 3
|
||||
assert limit_think_status.numpy()[0] == 3
|
||||
|
||||
def test_status_2_to_status_3_transition(self):
|
||||
"""Test transition from status 2 to status 3"""
|
||||
next_tokens = paddle.to_tensor([[100]], dtype="int64")
|
||||
max_think_lens = paddle.to_tensor([5], dtype="int32")
|
||||
step_idx = paddle.to_tensor([10], dtype="int64")
|
||||
limit_think_status = paddle.to_tensor([2], dtype="int32")
|
||||
accept_num = paddle.to_tensor([1], dtype="int32")
|
||||
seq_lens_decoder = paddle.to_tensor([10], dtype="int32")
|
||||
think_end_id = 999
|
||||
line_break_id = 888
|
||||
|
||||
# Run operator
|
||||
speculate_limit_thinking_content_length_v2(
|
||||
next_tokens,
|
||||
max_think_lens,
|
||||
step_idx,
|
||||
limit_think_status,
|
||||
accept_num,
|
||||
seq_lens_decoder,
|
||||
think_end_id,
|
||||
line_break_id,
|
||||
)
|
||||
|
||||
# Verify: status 2 -> 3
|
||||
assert limit_think_status.numpy()[0] == 3
|
||||
|
||||
def test_disabled_feature_negative_max_think_len(self):
|
||||
"""Test that negative max_think_len disables the feature"""
|
||||
next_tokens = paddle.to_tensor([[100, 101]], dtype="int64")
|
||||
max_think_lens = paddle.to_tensor([-1], dtype="int32")
|
||||
step_idx = paddle.to_tensor([100], dtype="int64")
|
||||
limit_think_status = paddle.to_tensor([0], dtype="int32")
|
||||
accept_num = paddle.to_tensor([2], dtype="int32")
|
||||
seq_lens_decoder = paddle.to_tensor([100], dtype="int32")
|
||||
think_end_id = 999
|
||||
line_break_id = 888
|
||||
|
||||
# Run operator
|
||||
speculate_limit_thinking_content_length_v2(
|
||||
next_tokens,
|
||||
max_think_lens,
|
||||
step_idx,
|
||||
limit_think_status,
|
||||
accept_num,
|
||||
seq_lens_decoder,
|
||||
think_end_id,
|
||||
line_break_id,
|
||||
)
|
||||
|
||||
# Verify: nothing changed
|
||||
assert limit_think_status.numpy()[0] == 0
|
||||
assert accept_num.numpy()[0] == 2
|
||||
|
||||
def test_zero_accept_num_early_return(self):
|
||||
"""Test early return when accept_num is 0"""
|
||||
next_tokens = paddle.to_tensor([[100]], dtype="int64")
|
||||
max_think_lens = paddle.to_tensor([5], dtype="int32")
|
||||
step_idx = paddle.to_tensor([10], dtype="int64")
|
||||
limit_think_status = paddle.to_tensor([0], dtype="int32")
|
||||
accept_num = paddle.to_tensor([0], dtype="int32")
|
||||
seq_lens_decoder = paddle.to_tensor([10], dtype="int32")
|
||||
think_end_id = 999
|
||||
line_break_id = 888
|
||||
|
||||
# Run operator
|
||||
speculate_limit_thinking_content_length_v2(
|
||||
next_tokens,
|
||||
max_think_lens,
|
||||
step_idx,
|
||||
limit_think_status,
|
||||
accept_num,
|
||||
seq_lens_decoder,
|
||||
think_end_id,
|
||||
line_break_id,
|
||||
)
|
||||
|
||||
# Verify: early return
|
||||
assert accept_num.numpy()[0] == 0
|
||||
assert limit_think_status.numpy()[0] == 0
|
||||
|
||||
def test_already_in_response_phase_status_3(self):
|
||||
"""Test that status 3 is terminal"""
|
||||
next_tokens = paddle.to_tensor([[100]], dtype="int64")
|
||||
max_think_lens = paddle.to_tensor([5], dtype="int32")
|
||||
step_idx = paddle.to_tensor([10], dtype="int64")
|
||||
limit_think_status = paddle.to_tensor([3], dtype="int32")
|
||||
accept_num = paddle.to_tensor([1], dtype="int32")
|
||||
seq_lens_decoder = paddle.to_tensor([10], dtype="int32")
|
||||
think_end_id = 999
|
||||
line_break_id = 888
|
||||
|
||||
# Run operator
|
||||
speculate_limit_thinking_content_length_v2(
|
||||
next_tokens,
|
||||
max_think_lens,
|
||||
step_idx,
|
||||
limit_think_status,
|
||||
accept_num,
|
||||
seq_lens_decoder,
|
||||
think_end_id,
|
||||
line_break_id,
|
||||
)
|
||||
|
||||
# Verify: early return, nothing changed
|
||||
assert limit_think_status.numpy()[0] == 3
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
unittest.main()
|
||||
Reference in New Issue
Block a user