mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-23 16:44:22 +08:00
[LLM] First commit the llm deployment code
This commit is contained in:
86
scripts/convert_ep_state_from_tp8.py
Normal file
86
scripts/convert_ep_state_from_tp8.py
Normal file
@@ -0,0 +1,86 @@
|
||||
"""
|
||||
# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
"""
|
||||
|
||||
import paddle
|
||||
import paddle.distributed as dist
|
||||
import pdb
|
||||
from glob import glob
|
||||
import os
|
||||
import numpy as np
|
||||
|
||||
import argparse
|
||||
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument("--model_dir", type=str, required=True)
|
||||
args = parser.parse_args()
|
||||
|
||||
rank = dist.get_rank()
|
||||
print("rank: ", rank)
|
||||
# merge tpn -> tp1
|
||||
model_dir = args.model_dir
|
||||
model_path_pp = glob(os.path.join(model_dir, f"pp{rank}"))
|
||||
model_path_pp_tp = []
|
||||
for p in model_path_pp:
|
||||
model_path_tp = glob(os.path.join(p, "model_state*"))
|
||||
model_path_tp = sorted(model_path_tp)
|
||||
save_merged_pp_path = os.path.join(p, "merged_tp1_state.pdparams")
|
||||
save_merged_pp_dir = os.path.join(model_dir, "merged_tp1_state_split")
|
||||
os.makedirs(save_merged_pp_dir, exist_ok=True)
|
||||
print(p, model_path_tp)
|
||||
|
||||
state_dicts = [paddle.load(path, return_numpy=True) for path in model_path_tp]
|
||||
state = state_dicts[0]
|
||||
|
||||
print("merge tp")
|
||||
print("p: ", p)
|
||||
for k, v in state.items():
|
||||
save_split_path = os.path.join(save_merged_pp_dir, k)
|
||||
state_now = []
|
||||
for i in range(len(state_dicts)):
|
||||
state_now.append(state_dicts[i][k])
|
||||
print("k: ", k, ", v.shape: ", v.shape)
|
||||
if "qkv_proj" in k:
|
||||
"""not need prmt"""
|
||||
# qkv not prmt
|
||||
ori_q = [s[:, :1024] for s in state_now]
|
||||
ori_k = [s[:, 1024:1152] for s in state_now]
|
||||
ori_v = [s[:, 1152:] for s in state_now]
|
||||
new_q = np.concatenate(ori_q, axis=1)
|
||||
new_k = np.concatenate(ori_k, axis=1)
|
||||
new_v = np.concatenate(ori_v, axis=1)
|
||||
print(new_q.shape)
|
||||
print(new_k.shape)
|
||||
print(new_v.shape)
|
||||
new_w = np.concatenate([new_q, new_k, new_v], axis=1)
|
||||
# new_w = np.concatenate(state_now, axis=1)
|
||||
elif "o_proj" in k or "down_proj" in k:
|
||||
new_w = np.concatenate(state_now, axis=0)
|
||||
elif "embed_tokens" in k:
|
||||
new_w = np.concatenate(state_now, axis=0)
|
||||
elif "up_gate_proj" in k:
|
||||
dim = state_now[0].shape[1]
|
||||
half_ffn1_1 = [s[:, :(dim // 2)] for s in state_now]
|
||||
half_ffn1_2 = [s[:, (dim // 2):] for s in state_now]
|
||||
new_ffn1_1 = np.concatenate(half_ffn1_1, axis=1)
|
||||
new_ffn1_2 = np.concatenate(half_ffn1_2, axis=1)
|
||||
new_w = np.concatenate([new_ffn1_1, new_ffn1_2], axis=1)
|
||||
elif "lm_head" in k or "mtp_linear_proj" in k:
|
||||
new_w = np.concatenate(state_now, axis=1)
|
||||
else:
|
||||
new_w = v
|
||||
print("merged_shape: ", new_w.shape)
|
||||
paddle.save(paddle.to_tensor(new_w), save_split_path)
|
||||
print("merge end")
|
Reference in New Issue
Block a user