mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-10 02:50:19 +08:00
[LLM] First commit the llm deployment code
This commit is contained in:
533
fastdeploy/input/text_processor.py
Normal file
533
fastdeploy/input/text_processor.py
Normal file
@@ -0,0 +1,533 @@
|
||||
"""
|
||||
# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License"
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
"""
|
||||
|
||||
import os
|
||||
from abc import ABC, abstractmethod
|
||||
|
||||
import numpy as np
|
||||
from paddlenlp.generation import GenerationConfig
|
||||
from paddlenlp.transformers import Llama3Tokenizer, LlamaTokenizer
|
||||
|
||||
from fastdeploy.utils import data_processor_logger
|
||||
|
||||
|
||||
class BaseDataProcessor(ABC):
|
||||
"""base class for data processor"""
|
||||
|
||||
def __init__(self):
|
||||
"""
|
||||
Returns:
|
||||
None
|
||||
"""
|
||||
self.tokenizer = self._load_tokenizer()
|
||||
self.tokenizer.bos_token_id = self.tokenizer._convert_token_to_id(
|
||||
self.tokenizer.bos_token)
|
||||
self.tokenizer.cls_token_id = self.tokenizer._convert_token_to_id(
|
||||
self.tokenizer.cls_token)
|
||||
self.tokenizer.sep_token_id = self.tokenizer._convert_token_to_id(
|
||||
self.tokenizer.sep_token)
|
||||
self.tokenizer.eos_token_id = self.tokenizer._convert_token_to_id(
|
||||
self.tokenizer.eos_token)
|
||||
self.tokenizer.mask_token_id = self.tokenizer._convert_token_to_id(
|
||||
self.tokenizer.mask_token)
|
||||
data_processor_logger.info((
|
||||
f"tokenizer information: bos_token is {self.tokenizer.bos_token}, {self.tokenizer.bos_token_id}, ",
|
||||
f"cls_token is {self.tokenizer.cls_token}, {self.tokenizer.cls_token_id}, "
|
||||
f"sep_token is {self.tokenizer.sep_token}, {self.tokenizer.sep_token_id}, "
|
||||
f"eos_token is {self.tokenizer.eos_token}, {self.tokenizer.eos_token_id}, "
|
||||
f"mask_token is {self.tokenizer.mask_token}, {self.tokenizer.mask_token_id}"
|
||||
))
|
||||
|
||||
@abstractmethod
|
||||
def process_request(self, request, **kwargs):
|
||||
"""
|
||||
Preprocess the request
|
||||
|
||||
Args:
|
||||
request (Dict): may contain text and messages fields
|
||||
**kwargs: others
|
||||
|
||||
Returns:
|
||||
bool: Whether preprocessing is successful
|
||||
str: error message
|
||||
"""
|
||||
raise NotImplementedError
|
||||
|
||||
@abstractmethod
|
||||
def process_response(self, response_dict):
|
||||
"""
|
||||
Preprocess the response
|
||||
|
||||
Args:
|
||||
response_dict (Dict): response for engine, contain ids fields
|
||||
|
||||
Returns:
|
||||
Dict: response contain text fields
|
||||
"""
|
||||
raise NotImplementedError
|
||||
|
||||
def text2ids(self, text, max_model_len=None):
|
||||
"""
|
||||
text to token ids
|
||||
|
||||
Args:
|
||||
text (str): text
|
||||
|
||||
Returns:
|
||||
List[int]: token ids list
|
||||
"""
|
||||
raise NotImplementedError
|
||||
|
||||
def messages2ids(self, messages):
|
||||
"""
|
||||
Convert multi-turn messages into ID sequences.
|
||||
|
||||
Args:
|
||||
messages (List[List[Dict[str, Any]]]): multi-turn messages.
|
||||
|
||||
Returns:
|
||||
List[int]: ID sequences
|
||||
"""
|
||||
raise NotImplementedError
|
||||
|
||||
def ids2tokens(self, token_id, task_id=None):
|
||||
"""
|
||||
token ids to strings
|
||||
|
||||
Args:
|
||||
token_id (List[int]): token id
|
||||
task_id (str): task id
|
||||
|
||||
Returns:
|
||||
List[str]: strings
|
||||
"""
|
||||
raise NotImplementedError
|
||||
|
||||
@abstractmethod
|
||||
def _load_tokenizer(self):
|
||||
"""
|
||||
load tokenizer
|
||||
|
||||
Returns:
|
||||
tokenizer (AutoTokenizer)
|
||||
"""
|
||||
raise NotImplementedError
|
||||
|
||||
|
||||
class DataProcessor(BaseDataProcessor):
|
||||
|
||||
def __init__(self, model_name_or_path):
|
||||
"""
|
||||
Initializes the DecodeStatus object.
|
||||
|
||||
Args:
|
||||
model_name_or_path (str): The name or path of the pre-trained model to be loaded.
|
||||
Can also be a path to a directory containing the pre-trained model file.
|
||||
|
||||
Returns:
|
||||
None.
|
||||
|
||||
Raises:
|
||||
None.
|
||||
"""
|
||||
|
||||
self.model_name_or_path = model_name_or_path
|
||||
self._init_config()
|
||||
|
||||
self.decode_status = dict()
|
||||
self.tokenizer = self._load_tokenizer()
|
||||
data_processor_logger.info(
|
||||
f"tokenizer information: bos_token is {self.tokenizer.bos_token}, {self.tokenizer.bos_token_id}, \
|
||||
eos_token is {self.tokenizer.eos_token}, {self.tokenizer.eos_token_id} "
|
||||
)
|
||||
|
||||
from paddlenlp.trl.llm_utils import get_eos_token_id
|
||||
|
||||
self.eos_token_ids = get_eos_token_id(self.tokenizer,
|
||||
self.generation_config)
|
||||
self.eos_token_id_len = len(self.eos_token_ids)
|
||||
self.pad_token_id = self.get_pad_id()
|
||||
self.tokenizer.pad_token_id = self.pad_token_id
|
||||
|
||||
def _init_config(self):
|
||||
"""
|
||||
初始化配置,包括模型名称、使用Hugging Face Tokenizer等。
|
||||
|
||||
Args:
|
||||
无参数,但是会从环境变量中获取一些配置信息。
|
||||
|
||||
Returns:
|
||||
无返回值,直接修改了类的属性。
|
||||
|
||||
Raises:
|
||||
无异常抛出。
|
||||
"""
|
||||
self.use_hf_tokenizer = int(os.getenv("USE_HF_TOKENIZER", "0")) == 1
|
||||
|
||||
# Generation config
|
||||
try:
|
||||
self.generation_config = GenerationConfig.from_pretrained(
|
||||
self.model_name_or_path)
|
||||
except Exception as e:
|
||||
data_processor_logger.warning(
|
||||
f"Can't find generation config: {e}, so it will not use generation_config field in the model config"
|
||||
)
|
||||
self.generation_config = None
|
||||
|
||||
def process_request(self, request, max_model_len=None):
|
||||
"""
|
||||
Preprocess the request
|
||||
|
||||
Args:
|
||||
request (Dict): may contain text and messages fields
|
||||
|
||||
Returns:
|
||||
bool: Whether preprocessing is successful
|
||||
str: error message
|
||||
"""
|
||||
if request.get("eos_token_ids") is None or len(
|
||||
request.eos_token_ids) == 0:
|
||||
request.eos_token_ids = self.eos_token_ids
|
||||
|
||||
stop_sequences = request.get("stop", [])
|
||||
if stop_sequences is not None and len(stop_sequences) != 0:
|
||||
stop_seqs, stop_seqs_len = self.update_stop_seq(stop_sequences)
|
||||
request.set("stop_token_ids", stop_seqs)
|
||||
request.set("stop_seqs_len", stop_seqs_len)
|
||||
|
||||
if request.prompt_token_ids is None or len(
|
||||
request.prompt_token_ids) == 0:
|
||||
if request.prompt is not None:
|
||||
request.prompt_token_ids = self.text2ids(
|
||||
request.prompt, max_model_len, request.raw_request)
|
||||
elif request.messages is not None:
|
||||
if self.tokenizer.chat_template is None:
|
||||
raise ValueError(
|
||||
"This model does not support chat_template.")
|
||||
request.prompt_token_ids = self.messages2ids(request.messages)
|
||||
else:
|
||||
raise ValueError(
|
||||
f"The request should have `input_ids`, `text` or `messages`: {request}."
|
||||
)
|
||||
|
||||
if max_model_len is not None and len(
|
||||
request.prompt_token_ids) > max_model_len:
|
||||
request.prompt_token_ids = request.prompt_token_ids[:
|
||||
max_model_len -
|
||||
1]
|
||||
return request
|
||||
|
||||
def process_request_dict(self, request, max_model_len=None):
|
||||
"""
|
||||
Preprocess the request
|
||||
|
||||
Args:
|
||||
request (Dict): may contain text and messages fields
|
||||
|
||||
Returns:
|
||||
bool: Whether preprocessing is successful
|
||||
str: error message
|
||||
"""
|
||||
if not request.get('eos_token_ids'):
|
||||
request['eos_token_ids'] = self.eos_token_ids
|
||||
|
||||
# 处理stop_sequences
|
||||
stop_sequences = request.get('stop', [])
|
||||
if stop_sequences:
|
||||
stop_seqs, stop_seqs_len = self.update_stop_seq(stop_sequences)
|
||||
request['stop_token_ids'] = stop_seqs
|
||||
request['stop_seqs_len'] = stop_seqs_len
|
||||
|
||||
# 处理prompt_token_ids
|
||||
if not request.get('prompt_token_ids'):
|
||||
if 'prompt' in request:
|
||||
raw_request = request.get('raw_request', True)
|
||||
request['prompt_token_ids'] = self.text2ids(
|
||||
request['prompt'], max_model_len, raw_request).tolist()
|
||||
elif 'messages' in request:
|
||||
if self.tokenizer.chat_template is None:
|
||||
raise ValueError(
|
||||
"This model does not support chat_template.")
|
||||
request['prompt_token_ids'] = self.messages2ids(
|
||||
request['messages']).tolist()
|
||||
else:
|
||||
raise ValueError(
|
||||
f"Request must contain 'prompt_token_ids', 'prompt', or 'messages': {request}"
|
||||
)
|
||||
|
||||
# 截断超过长度限制的prompt
|
||||
if max_model_len is not None and len(
|
||||
request['prompt_token_ids']) > max_model_len:
|
||||
request['prompt_token_ids'] = request[
|
||||
'prompt_token_ids'][:max_model_len - 1]
|
||||
|
||||
return request
|
||||
|
||||
def process_response(self, response_dict, **kwargs):
|
||||
"""
|
||||
Preprocess the response
|
||||
|
||||
Args:
|
||||
response_dict (Dict): response for engine, contain ids fields
|
||||
|
||||
Returns:
|
||||
Dict: response contain text fields
|
||||
"""
|
||||
is_end = response_dict.finished
|
||||
req_id = response_dict.request_id
|
||||
|
||||
token_ids = response_dict.outputs.token_ids
|
||||
response_dict.outputs.text = self.ids2tokens(token_ids, req_id)
|
||||
response_dict.usage = {
|
||||
"completion_tokens": response_dict.outputs.index + 1
|
||||
}
|
||||
|
||||
if is_end:
|
||||
self.clear_request_status(req_id)
|
||||
data_processor_logger.debug(
|
||||
"Request id: {} has been completed.".format(token_ids))
|
||||
response_dict.outputs.text = self.ids2tokens(token_ids, req_id)
|
||||
self.clear_request_status(req_id)
|
||||
return response_dict
|
||||
|
||||
def process_response_dict(self, response_dict, stream=True):
|
||||
"""
|
||||
Preprocess the response
|
||||
|
||||
Args:
|
||||
response_dict (Dict): response for engine, contain ids fields
|
||||
|
||||
Returns:
|
||||
Dict: response contain text fields
|
||||
"""
|
||||
is_end = response_dict["finished"]
|
||||
req_id = response_dict["request_id"]
|
||||
|
||||
token_ids = response_dict["outputs"]["token_ids"]
|
||||
|
||||
if is_end:
|
||||
data_processor_logger.debug(
|
||||
"Request id: {} has been completed.".format(token_ids))
|
||||
full_text = self.clear_request_status(req_id)
|
||||
if not stream:
|
||||
response_dict["outputs"]["text"] = full_text
|
||||
else:
|
||||
response_dict["outputs"]["text"] = ""
|
||||
else:
|
||||
response_dict["outputs"]["text"] = self.ids2tokens(
|
||||
token_ids, req_id)
|
||||
return response_dict
|
||||
|
||||
def text2ids(self, text, max_model_len, raw_request=True):
|
||||
"""
|
||||
text to token ids
|
||||
|
||||
Args:
|
||||
text (str): text
|
||||
|
||||
Returns:
|
||||
List[int]: token ids list
|
||||
"""
|
||||
if self.use_hf_tokenizer:
|
||||
tokens = self.tokenizer(
|
||||
text,
|
||||
return_tensors="np",
|
||||
padding=True,
|
||||
truncation=True,
|
||||
)
|
||||
else:
|
||||
if not raw_request or self.tokenizer.chat_template is None:
|
||||
text = [text] if isinstance(text, str) else text
|
||||
chat_template = False
|
||||
elif self.tokenizer.chat_template is not None:
|
||||
text = [text] if isinstance(text, str) else text
|
||||
text = [
|
||||
self.tokenizer.apply_chat_template(sentence,
|
||||
tokenize=False)
|
||||
for sentence in text
|
||||
]
|
||||
chat_template = True
|
||||
tokens = self.tokenizer(
|
||||
text,
|
||||
return_tensors="np",
|
||||
padding=True,
|
||||
truncation=True,
|
||||
max_length=max_model_len,
|
||||
add_special_tokens=chat_template,
|
||||
)
|
||||
return tokens["input_ids"][0]
|
||||
|
||||
def messages2ids(self, messages):
|
||||
"""
|
||||
Convert multi-turn messages into ID sequences.
|
||||
|
||||
Args:
|
||||
messages (List[List[Dict[str, Any]]]): multi-turn messages.
|
||||
|
||||
Returns:
|
||||
List[int]: ID sequences
|
||||
"""
|
||||
message_result = self.tokenizer.apply_chat_template(
|
||||
messages, return_tensors="pd")
|
||||
return np.array(message_result["input_ids"][0])
|
||||
|
||||
def ids2tokens(self, token_id, task_id):
|
||||
"""
|
||||
token ids to strings
|
||||
|
||||
Args:
|
||||
token_ids (List[int]): token ids
|
||||
task_id (str): task id
|
||||
|
||||
Returns:
|
||||
List[str]: strings
|
||||
"""
|
||||
if self.use_hf_tokenizer:
|
||||
if task_id not in self.decode_status:
|
||||
# history token ids & history token strings & befer decode str
|
||||
self.decode_status[task_id] = [[], [], ""]
|
||||
|
||||
previous_token_ids = self.decode_status[task_id][0]
|
||||
decode_str = self.tokenizer.batch_decode(
|
||||
[previous_token_ids + token_id],
|
||||
skip_special_tokens=True,
|
||||
clean_up_tokenization_spaces=False)
|
||||
if isinstance(decode_str, list) and len(decode_str):
|
||||
new_str = decode_str[0].replace(self.decode_status[task_id][2],
|
||||
"", 1)
|
||||
self.decode_status[task_id][1].append(new_str)
|
||||
self.decode_status[task_id][2] = decode_str[0]
|
||||
else:
|
||||
new_str = ""
|
||||
self.decode_status[task_id][0] += token_id
|
||||
return new_str
|
||||
else:
|
||||
if task_id not in self.decode_status:
|
||||
# prefix offset & read offset & history token ids & history token strings
|
||||
self.decode_status[task_id] = [0, 0, [], []]
|
||||
|
||||
prefix_offset = self.decode_status[task_id][0]
|
||||
read_offset = self.decode_status[task_id][1]
|
||||
previous_token_ids = self.decode_status[task_id][2]
|
||||
decode_str, prefix_offset, read_offset = self.tokenizer.decode_token(
|
||||
previous_token_ids + token_id, prefix_offset, read_offset)
|
||||
self.decode_status[task_id][0] = prefix_offset
|
||||
self.decode_status[task_id][1] = read_offset
|
||||
self.decode_status[task_id][2] += token_id
|
||||
self.decode_status[task_id][3].append(decode_str)
|
||||
return decode_str
|
||||
|
||||
def _load_tokenizer(self):
|
||||
"""
|
||||
load tokenizer
|
||||
|
||||
Returns:
|
||||
tokenizer (AutoTokenizer)
|
||||
"""
|
||||
|
||||
if self.use_hf_tokenizer:
|
||||
from transformers import AutoTokenizer
|
||||
return AutoTokenizer.from_pretrained(self.model_name_or_path,
|
||||
use_fast=False)
|
||||
else:
|
||||
from paddlenlp.transformers import AutoTokenizer
|
||||
return AutoTokenizer.from_pretrained(self.model_name_or_path,
|
||||
padding_side="left",
|
||||
use_fast=True)
|
||||
|
||||
def clear_request_status(self, task_id):
|
||||
"""
|
||||
clear request status
|
||||
|
||||
Args:
|
||||
task_id (str): task id
|
||||
|
||||
Returns:
|
||||
results_all (str): all token strings
|
||||
"""
|
||||
results_all = ""
|
||||
if task_id in self.decode_status:
|
||||
if self.use_hf_tokenizer:
|
||||
results_all = self.decode_status[task_id][2]
|
||||
else:
|
||||
results_all = "".join(self.decode_status[task_id][3])
|
||||
del self.decode_status[task_id]
|
||||
return results_all
|
||||
|
||||
def get_pad_id(self):
|
||||
"""
|
||||
get pad_token_id, if not pad_token_id, use eos_token
|
||||
|
||||
Returns:
|
||||
int: pad_token_id
|
||||
"""
|
||||
if isinstance(self.tokenizer,
|
||||
(LlamaTokenizer,
|
||||
Llama3Tokenizer)) and not self.tokenizer.pad_token_id:
|
||||
return self.tokenizer.eos_token
|
||||
return self.tokenizer.pad_token_id
|
||||
|
||||
def pad_batch_data(self,
|
||||
insts,
|
||||
pad_id=0,
|
||||
return_seq_len=False,
|
||||
return_array=True,
|
||||
pad_style="right"):
|
||||
"""Pad the instances to the max sequence length in batch."""
|
||||
if len(insts) == 0:
|
||||
padded_insts = np.array([[]],
|
||||
dtype=np.int64) if return_array else [[]]
|
||||
if return_seq_len:
|
||||
seq_len = np.array([], dtype=np.int64) if return_array else []
|
||||
return padded_insts, seq_len
|
||||
return padded_insts
|
||||
|
||||
max_len = max(map(len, insts))
|
||||
if pad_style == "left":
|
||||
padded_insts = [[pad_id] * (max_len - len(inst)) + list(inst)
|
||||
for inst in insts]
|
||||
else:
|
||||
padded_insts = [
|
||||
list(inst) + [pad_id] * (max_len - len(inst)) for inst in insts
|
||||
]
|
||||
if return_array:
|
||||
padded_insts = np.array(padded_insts,
|
||||
dtype=np.int64).reshape([-1, max_len])
|
||||
|
||||
if return_seq_len:
|
||||
seq_len = [len(inst) for inst in insts]
|
||||
if return_array:
|
||||
seq_len = np.array(seq_len, dtype=np.int64).reshape(-1, 1)
|
||||
return padded_insts, seq_len
|
||||
return padded_insts
|
||||
|
||||
def update_stop_seq(self, stop_sequences):
|
||||
"""
|
||||
Update stop sequences from request.
|
||||
"""
|
||||
stop_seqs = []
|
||||
for seq in stop_sequences:
|
||||
if seq != self.tokenizer.eos_token_id:
|
||||
stop_seqs.append(
|
||||
self.tokenizer.convert_tokens_to_ids(
|
||||
self.tokenizer.tokenize(seq)))
|
||||
stop_seqs, stop_seqs_len = self.pad_batch_data(stop_seqs,
|
||||
pad_id=-1,
|
||||
return_seq_len=True,
|
||||
return_array=False)
|
||||
data_processor_logger.debug(
|
||||
f"processed stop_seqs: {stop_seqs}, {stop_seqs_len}")
|
||||
return stop_seqs, stop_seqs_len
|
Reference in New Issue
Block a user