[LLM] First commit the llm deployment code

This commit is contained in:
jiangjiajun
2025-06-09 19:20:15 +08:00
committed by XieYunshen
parent 8513414112
commit 149c79699d
11814 changed files with 127294 additions and 1293102 deletions

View File

@@ -0,0 +1,533 @@
"""
# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
import os
from abc import ABC, abstractmethod
import numpy as np
from paddlenlp.generation import GenerationConfig
from paddlenlp.transformers import Llama3Tokenizer, LlamaTokenizer
from fastdeploy.utils import data_processor_logger
class BaseDataProcessor(ABC):
"""base class for data processor"""
def __init__(self):
"""
Returns:
None
"""
self.tokenizer = self._load_tokenizer()
self.tokenizer.bos_token_id = self.tokenizer._convert_token_to_id(
self.tokenizer.bos_token)
self.tokenizer.cls_token_id = self.tokenizer._convert_token_to_id(
self.tokenizer.cls_token)
self.tokenizer.sep_token_id = self.tokenizer._convert_token_to_id(
self.tokenizer.sep_token)
self.tokenizer.eos_token_id = self.tokenizer._convert_token_to_id(
self.tokenizer.eos_token)
self.tokenizer.mask_token_id = self.tokenizer._convert_token_to_id(
self.tokenizer.mask_token)
data_processor_logger.info((
f"tokenizer information: bos_token is {self.tokenizer.bos_token}, {self.tokenizer.bos_token_id}, ",
f"cls_token is {self.tokenizer.cls_token}, {self.tokenizer.cls_token_id}, "
f"sep_token is {self.tokenizer.sep_token}, {self.tokenizer.sep_token_id}, "
f"eos_token is {self.tokenizer.eos_token}, {self.tokenizer.eos_token_id}, "
f"mask_token is {self.tokenizer.mask_token}, {self.tokenizer.mask_token_id}"
))
@abstractmethod
def process_request(self, request, **kwargs):
"""
Preprocess the request
Args:
request (Dict): may contain text and messages fields
**kwargs: others
Returns:
bool: Whether preprocessing is successful
str: error message
"""
raise NotImplementedError
@abstractmethod
def process_response(self, response_dict):
"""
Preprocess the response
Args:
response_dict (Dict): response for engine, contain ids fields
Returns:
Dict: response contain text fields
"""
raise NotImplementedError
def text2ids(self, text, max_model_len=None):
"""
text to token ids
Args:
text (str): text
Returns:
List[int]: token ids list
"""
raise NotImplementedError
def messages2ids(self, messages):
"""
Convert multi-turn messages into ID sequences.
Args:
messages (List[List[Dict[str, Any]]]): multi-turn messages.
Returns:
List[int]: ID sequences
"""
raise NotImplementedError
def ids2tokens(self, token_id, task_id=None):
"""
token ids to strings
Args:
token_id (List[int]): token id
task_id (str): task id
Returns:
List[str]: strings
"""
raise NotImplementedError
@abstractmethod
def _load_tokenizer(self):
"""
load tokenizer
Returns:
tokenizer (AutoTokenizer)
"""
raise NotImplementedError
class DataProcessor(BaseDataProcessor):
def __init__(self, model_name_or_path):
"""
Initializes the DecodeStatus object.
Args:
model_name_or_path (str): The name or path of the pre-trained model to be loaded.
Can also be a path to a directory containing the pre-trained model file.
Returns:
None.
Raises:
None.
"""
self.model_name_or_path = model_name_or_path
self._init_config()
self.decode_status = dict()
self.tokenizer = self._load_tokenizer()
data_processor_logger.info(
f"tokenizer information: bos_token is {self.tokenizer.bos_token}, {self.tokenizer.bos_token_id}, \
eos_token is {self.tokenizer.eos_token}, {self.tokenizer.eos_token_id} "
)
from paddlenlp.trl.llm_utils import get_eos_token_id
self.eos_token_ids = get_eos_token_id(self.tokenizer,
self.generation_config)
self.eos_token_id_len = len(self.eos_token_ids)
self.pad_token_id = self.get_pad_id()
self.tokenizer.pad_token_id = self.pad_token_id
def _init_config(self):
"""
初始化配置包括模型名称、使用Hugging Face Tokenizer等。
Args:
无参数,但是会从环境变量中获取一些配置信息。
Returns:
无返回值,直接修改了类的属性。
Raises:
无异常抛出。
"""
self.use_hf_tokenizer = int(os.getenv("USE_HF_TOKENIZER", "0")) == 1
# Generation config
try:
self.generation_config = GenerationConfig.from_pretrained(
self.model_name_or_path)
except Exception as e:
data_processor_logger.warning(
f"Can't find generation config: {e}, so it will not use generation_config field in the model config"
)
self.generation_config = None
def process_request(self, request, max_model_len=None):
"""
Preprocess the request
Args:
request (Dict): may contain text and messages fields
Returns:
bool: Whether preprocessing is successful
str: error message
"""
if request.get("eos_token_ids") is None or len(
request.eos_token_ids) == 0:
request.eos_token_ids = self.eos_token_ids
stop_sequences = request.get("stop", [])
if stop_sequences is not None and len(stop_sequences) != 0:
stop_seqs, stop_seqs_len = self.update_stop_seq(stop_sequences)
request.set("stop_token_ids", stop_seqs)
request.set("stop_seqs_len", stop_seqs_len)
if request.prompt_token_ids is None or len(
request.prompt_token_ids) == 0:
if request.prompt is not None:
request.prompt_token_ids = self.text2ids(
request.prompt, max_model_len, request.raw_request)
elif request.messages is not None:
if self.tokenizer.chat_template is None:
raise ValueError(
"This model does not support chat_template.")
request.prompt_token_ids = self.messages2ids(request.messages)
else:
raise ValueError(
f"The request should have `input_ids`, `text` or `messages`: {request}."
)
if max_model_len is not None and len(
request.prompt_token_ids) > max_model_len:
request.prompt_token_ids = request.prompt_token_ids[:
max_model_len -
1]
return request
def process_request_dict(self, request, max_model_len=None):
"""
Preprocess the request
Args:
request (Dict): may contain text and messages fields
Returns:
bool: Whether preprocessing is successful
str: error message
"""
if not request.get('eos_token_ids'):
request['eos_token_ids'] = self.eos_token_ids
# 处理stop_sequences
stop_sequences = request.get('stop', [])
if stop_sequences:
stop_seqs, stop_seqs_len = self.update_stop_seq(stop_sequences)
request['stop_token_ids'] = stop_seqs
request['stop_seqs_len'] = stop_seqs_len
# 处理prompt_token_ids
if not request.get('prompt_token_ids'):
if 'prompt' in request:
raw_request = request.get('raw_request', True)
request['prompt_token_ids'] = self.text2ids(
request['prompt'], max_model_len, raw_request).tolist()
elif 'messages' in request:
if self.tokenizer.chat_template is None:
raise ValueError(
"This model does not support chat_template.")
request['prompt_token_ids'] = self.messages2ids(
request['messages']).tolist()
else:
raise ValueError(
f"Request must contain 'prompt_token_ids', 'prompt', or 'messages': {request}"
)
# 截断超过长度限制的prompt
if max_model_len is not None and len(
request['prompt_token_ids']) > max_model_len:
request['prompt_token_ids'] = request[
'prompt_token_ids'][:max_model_len - 1]
return request
def process_response(self, response_dict, **kwargs):
"""
Preprocess the response
Args:
response_dict (Dict): response for engine, contain ids fields
Returns:
Dict: response contain text fields
"""
is_end = response_dict.finished
req_id = response_dict.request_id
token_ids = response_dict.outputs.token_ids
response_dict.outputs.text = self.ids2tokens(token_ids, req_id)
response_dict.usage = {
"completion_tokens": response_dict.outputs.index + 1
}
if is_end:
self.clear_request_status(req_id)
data_processor_logger.debug(
"Request id: {} has been completed.".format(token_ids))
response_dict.outputs.text = self.ids2tokens(token_ids, req_id)
self.clear_request_status(req_id)
return response_dict
def process_response_dict(self, response_dict, stream=True):
"""
Preprocess the response
Args:
response_dict (Dict): response for engine, contain ids fields
Returns:
Dict: response contain text fields
"""
is_end = response_dict["finished"]
req_id = response_dict["request_id"]
token_ids = response_dict["outputs"]["token_ids"]
if is_end:
data_processor_logger.debug(
"Request id: {} has been completed.".format(token_ids))
full_text = self.clear_request_status(req_id)
if not stream:
response_dict["outputs"]["text"] = full_text
else:
response_dict["outputs"]["text"] = ""
else:
response_dict["outputs"]["text"] = self.ids2tokens(
token_ids, req_id)
return response_dict
def text2ids(self, text, max_model_len, raw_request=True):
"""
text to token ids
Args:
text (str): text
Returns:
List[int]: token ids list
"""
if self.use_hf_tokenizer:
tokens = self.tokenizer(
text,
return_tensors="np",
padding=True,
truncation=True,
)
else:
if not raw_request or self.tokenizer.chat_template is None:
text = [text] if isinstance(text, str) else text
chat_template = False
elif self.tokenizer.chat_template is not None:
text = [text] if isinstance(text, str) else text
text = [
self.tokenizer.apply_chat_template(sentence,
tokenize=False)
for sentence in text
]
chat_template = True
tokens = self.tokenizer(
text,
return_tensors="np",
padding=True,
truncation=True,
max_length=max_model_len,
add_special_tokens=chat_template,
)
return tokens["input_ids"][0]
def messages2ids(self, messages):
"""
Convert multi-turn messages into ID sequences.
Args:
messages (List[List[Dict[str, Any]]]): multi-turn messages.
Returns:
List[int]: ID sequences
"""
message_result = self.tokenizer.apply_chat_template(
messages, return_tensors="pd")
return np.array(message_result["input_ids"][0])
def ids2tokens(self, token_id, task_id):
"""
token ids to strings
Args:
token_ids (List[int]): token ids
task_id (str): task id
Returns:
List[str]: strings
"""
if self.use_hf_tokenizer:
if task_id not in self.decode_status:
# history token ids & history token strings & befer decode str
self.decode_status[task_id] = [[], [], ""]
previous_token_ids = self.decode_status[task_id][0]
decode_str = self.tokenizer.batch_decode(
[previous_token_ids + token_id],
skip_special_tokens=True,
clean_up_tokenization_spaces=False)
if isinstance(decode_str, list) and len(decode_str):
new_str = decode_str[0].replace(self.decode_status[task_id][2],
"", 1)
self.decode_status[task_id][1].append(new_str)
self.decode_status[task_id][2] = decode_str[0]
else:
new_str = ""
self.decode_status[task_id][0] += token_id
return new_str
else:
if task_id not in self.decode_status:
# prefix offset & read offset & history token ids & history token strings
self.decode_status[task_id] = [0, 0, [], []]
prefix_offset = self.decode_status[task_id][0]
read_offset = self.decode_status[task_id][1]
previous_token_ids = self.decode_status[task_id][2]
decode_str, prefix_offset, read_offset = self.tokenizer.decode_token(
previous_token_ids + token_id, prefix_offset, read_offset)
self.decode_status[task_id][0] = prefix_offset
self.decode_status[task_id][1] = read_offset
self.decode_status[task_id][2] += token_id
self.decode_status[task_id][3].append(decode_str)
return decode_str
def _load_tokenizer(self):
"""
load tokenizer
Returns:
tokenizer (AutoTokenizer)
"""
if self.use_hf_tokenizer:
from transformers import AutoTokenizer
return AutoTokenizer.from_pretrained(self.model_name_or_path,
use_fast=False)
else:
from paddlenlp.transformers import AutoTokenizer
return AutoTokenizer.from_pretrained(self.model_name_or_path,
padding_side="left",
use_fast=True)
def clear_request_status(self, task_id):
"""
clear request status
Args:
task_id (str): task id
Returns:
results_all (str): all token strings
"""
results_all = ""
if task_id in self.decode_status:
if self.use_hf_tokenizer:
results_all = self.decode_status[task_id][2]
else:
results_all = "".join(self.decode_status[task_id][3])
del self.decode_status[task_id]
return results_all
def get_pad_id(self):
"""
get pad_token_id, if not pad_token_id, use eos_token
Returns:
int: pad_token_id
"""
if isinstance(self.tokenizer,
(LlamaTokenizer,
Llama3Tokenizer)) and not self.tokenizer.pad_token_id:
return self.tokenizer.eos_token
return self.tokenizer.pad_token_id
def pad_batch_data(self,
insts,
pad_id=0,
return_seq_len=False,
return_array=True,
pad_style="right"):
"""Pad the instances to the max sequence length in batch."""
if len(insts) == 0:
padded_insts = np.array([[]],
dtype=np.int64) if return_array else [[]]
if return_seq_len:
seq_len = np.array([], dtype=np.int64) if return_array else []
return padded_insts, seq_len
return padded_insts
max_len = max(map(len, insts))
if pad_style == "left":
padded_insts = [[pad_id] * (max_len - len(inst)) + list(inst)
for inst in insts]
else:
padded_insts = [
list(inst) + [pad_id] * (max_len - len(inst)) for inst in insts
]
if return_array:
padded_insts = np.array(padded_insts,
dtype=np.int64).reshape([-1, max_len])
if return_seq_len:
seq_len = [len(inst) for inst in insts]
if return_array:
seq_len = np.array(seq_len, dtype=np.int64).reshape(-1, 1)
return padded_insts, seq_len
return padded_insts
def update_stop_seq(self, stop_sequences):
"""
Update stop sequences from request.
"""
stop_seqs = []
for seq in stop_sequences:
if seq != self.tokenizer.eos_token_id:
stop_seqs.append(
self.tokenizer.convert_tokens_to_ids(
self.tokenizer.tokenize(seq)))
stop_seqs, stop_seqs_len = self.pad_batch_data(stop_seqs,
pad_id=-1,
return_seq_len=True,
return_array=False)
data_processor_logger.debug(
f"processed stop_seqs: {stop_seqs}, {stop_seqs_len}")
return stop_seqs, stop_seqs_len