[LLM] First commit the llm deployment code

This commit is contained in:
jiangjiajun
2025-06-09 19:20:15 +08:00
committed by XieYunshen
parent 8513414112
commit 149c79699d
11814 changed files with 127294 additions and 1293102 deletions

140
docs/serving.md Normal file
View File

@@ -0,0 +1,140 @@
# 服务化部署
使用如下命令进行服务部署
```bash
python -m fastdeploy.entrypoints.openai.api_server --model ernie-45-turbo --port 8188 --tensor-parallel-size 8
```
其中api_server支持的参数包括
* --host: 服务配置的hostname
* --port: 服务配置的HTTP端口
* --metrics-port: 服务配置的metrics端口 详细参考[metrics说明](./metrics.md)
* --workers: api-server基于uvicorn启动时的进程数
其余参数为引擎配置,可直接参考[离线推理](./offline_inference.md)中fastdeploy.LLM的参数说明
* --model
* --max-model-len
* --block-size
* --use-warmup
* --engine-worker-queue-port
* --tensor-parallel-size
* --max-num-seqs
* --num-gpu-blocks-override
* --max-num-batched-tokens
* --gpu-memory-utilization
* --kv-cache-ratio
* --enable-mm
除上述参数外服务在启动时同步也包含Scheduler(包含LocalScheduler单实例服务或GlobalScheduler多实例负载均衡),相关使用说明可参考[Scheduler文档)(./scheduler.md)。
## 请求服务
FastDeploy服务接口兼容OpenAI协议因此可以直接使用openai的请求方式请求服务如下分别提供curl和python示例,
```bash
curl -X POST "http://0.0.0.0:8188/v1/chat/completions" \
-H "Content-Type: application/json" \
-d '{
"messages": [
{"role": "user", "content": "Hello!"}
]
}'
```
```python
import openai
ip = "0.0.0.0"
service_http_port = "8188" # 服务配置的
client = openai.Client(base_url=f"http://{ip}:{service_http_port}/v1", api_key="EMPTY_API_KEY")
# 非流式对话
response = client.chat.completions.create(
model="default",
messages=[
{"role": "system", "content": "You are a helpful AI assistant."}, # system不是必需可选
{"role": "user", "content": "List 3 countries and their capitals."},
],
temperature=1,
max_tokens=1024,
stream=False,
)
print(response)
# 流式对话,历史多轮
response = client.chat.completions.create(
model="default",
messages=[
{"role": "system", "content": "You are a helpful AI assistant."}, # system不是必需可选
{"role": "user", "content": "List 3 countries and their capitals."},
{"role": "assistant", "content": "China(Beijing), France(Paris), Australia(Canberra)."},
{"role": "user", "content": "OK, tell more."},
],
temperature=1,
max_tokens=1024,
stream=True,
)
for chunk in response:
if chunk.choices[0].delta is not None:
print(chunk.choices[0].delta, end='')
print("\n")
```
关于OpenAI协议的说明可参考文档 OpenAI Chat Compeltion API需要说明的是FastDeploy提供的服务在参数上存在如下差异
1. 仅支持OpenAI如下参数其余参数配置会被服务忽略
- prompt (v1/completions)
- messages(v1/chat/completions)
- frequency_penalty: Optional[float] = 0.0
- max_tokens: Optional[int] = 16
- presence_penalty: Optional[float] = 0.0
- seed: Optional[int] = None
- stream: Optional[bool] = False
- stream_options: Optional[StreamOptions] = None
- temperature: Optional[float] = None
- top_p: Optional[float] = None
- metadata: Optional[dict] = None (仅在v1/chat/compeltions中支持用于配置min_tokens例如metadata={"min_tokens": 20})
> 注:若为X1 模型 由于思考链默认打卡导致输出过长max tokens 可以设置为模型最长输出,或无需设置
2. 在返回的信息
新增返回参数:
arrival_time 每个token 的返回的累计耗时
reasoning_content: 思考链返回结果
```python
ChatCompletionStreamResponse:
id: str
object: str = "chat.completion.chunk"
created: int = Field(default_factory=lambda: int(time.time()))
model: str
choices: List[ChatCompletionResponseStreamChoice]
ChatCompletionResponseStreamChoice:
index: int
delta: DeltaMessage
finish_reason: Optional[Literal["stop", "length"]] = None
arrival_time: Optional[float] = None
DeltaMessage:
role: Optional[str] = None
content: Optional[str] = None
token_ids: Optional[List[int]] = None
reasoning_content: Optional[str] = None
```