[Feature][XPU] add custom kernels for mtp (#3537)

This commit is contained in:
lengxia
2025-08-25 10:14:17 +08:00
committed by GitHub
parent bdbac0aa3d
commit 137e539456
93 changed files with 13954 additions and 2 deletions

View File

@@ -0,0 +1,210 @@
# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import numpy as np
# tests/test_speculate_update_v3.py
import paddle
from fastdeploy.model_executor.ops.xpu import speculate_update_v3
# ---------------- NumPy 参考实现 ----------------
def speculate_update_v3_np(
seq_lens_encoder,
seq_lens_decoder,
not_need_stop,
draft_tokens,
actual_draft_token_nums,
accept_tokens,
accept_num,
stop_flags,
seq_lens_this_time,
is_block_step,
stop_nums,
):
"""
完全复现 CPU / CUDA 逻辑的 NumPy 参考版本(就地修改)。
"""
stop_sum = 0
real_bsz = seq_lens_this_time.shape[0]
max_bsz = stop_flags.shape[0]
max_draft_tokens = draft_tokens.shape[1]
for bid in range(max_bsz):
stop_flag_now_int = 0
inactive = bid >= real_bsz
block_step = (not inactive) and is_block_step[bid]
if (not block_step) and (not inactive):
if stop_flags[bid]:
stop_flag_now_int = 1
# encoder 长度为 0 时直接累加 decoder
if seq_lens_encoder[bid] == 0:
seq_lens_decoder[bid] += accept_num[bid]
# draft 长度自适应
if (seq_lens_encoder[bid] == 0) and (seq_lens_this_time[bid] > 1):
cur_len = actual_draft_token_nums[bid]
if accept_num[bid] - 1 == cur_len: # 全部接受
if cur_len + 2 <= max_draft_tokens - 1:
cur_len += 2
elif cur_len + 1 <= max_draft_tokens - 1:
cur_len += 1
else:
cur_len = max_draft_tokens - 1
else: # 有拒绝
cur_len = max(1, cur_len - 1)
actual_draft_token_nums[bid] = cur_len
# 偿还 encoder 欠账
if seq_lens_encoder[bid] != 0:
seq_lens_decoder[bid] += seq_lens_encoder[bid]
seq_lens_encoder[bid] = 0
# 写回下一轮首 token
draft_tokens[bid, 0] = accept_tokens[bid, accept_num[bid] - 1]
# 停止则清零 decoder
if stop_flag_now_int:
seq_lens_decoder[bid] = 0
elif inactive:
stop_flag_now_int = 1 # padding slot 视为 stop
stop_sum += stop_flag_now_int
# print("stop_sum: ", stop_sum)
not_need_stop[0] = stop_sum < stop_nums[0]
# 返回引用,仅供一致性
return (
seq_lens_encoder,
seq_lens_decoder,
not_need_stop,
draft_tokens,
actual_draft_token_nums,
)
# ---------------- 生成随机输入 ----------------
def gen_inputs(
max_bsz=512, # 与 CUDA BlockSize 对齐
max_draft_tokens=16,
real_bsz=123, # 可自调;须 ≤ max_bsz
seed=2022,
):
rng = np.random.default_rng(seed)
# 基本张量
seq_lens_encoder = rng.integers(0, 3, size=max_bsz, dtype=np.int32)
seq_lens_decoder = rng.integers(0, 20, size=max_bsz, dtype=np.int32)
not_need_stop = rng.integers(0, 1, size=1, dtype=np.bool_)
draft_tokens = rng.integers(0, 1000, size=(max_bsz, max_draft_tokens), dtype=np.int64)
actual_draft_nums = rng.integers(1, max_draft_tokens, size=max_bsz, dtype=np.int32)
accept_tokens = rng.integers(0, 1000, size=(max_bsz, max_draft_tokens), dtype=np.int64)
accept_num = rng.integers(1, max_draft_tokens, size=max_bsz, dtype=np.int32)
stop_flags = rng.integers(0, 2, size=max_bsz, dtype=np.bool_)
is_block_step = rng.integers(0, 2, size=max_bsz, dtype=np.bool_)
stop_nums = np.array([5], dtype=np.int64) # 阈值随意
# seq_lens_this_time 仅取 real_bsz 长度
seq_lens_this_time = rng.integers(1, max_draft_tokens, size=real_bsz, dtype=np.int32)
return {
"seq_lens_encoder": seq_lens_encoder,
"seq_lens_decoder": seq_lens_decoder,
"not_need_stop": not_need_stop,
"draft_tokens": draft_tokens,
"actual_draft_token_nums": actual_draft_nums,
"accept_tokens": accept_tokens,
"accept_num": accept_num,
"stop_flags": stop_flags,
"seq_lens_this_time": seq_lens_this_time,
"is_block_step": is_block_step,
"stop_nums": stop_nums,
# real_bsz = real_bsz,
# max_bsz = max_bsz,
# max_draft_tokens = max_draft_tokens
}
# ------------------- 单测主体 -------------------
inputs = gen_inputs(max_bsz=512, max_draft_tokens=32, real_bsz=201)
# ---- Paddle 端 ----
paddle_inputs = {}
for k, v in inputs.items():
if k in ("real_bsz", "max_bsz", "max_draft_tokens"):
paddle_inputs[k] = v # 纯 python int
else:
if k == "not_need_stop":
paddle_inputs[k] = paddle.to_tensor(v, place=paddle.CPUPlace())
else:
# 其余张量保持默认 place想测 GPU 就手动加 place=paddle.CUDAPlace(0)
paddle_inputs[k] = paddle.to_tensor(v)
# ---- NumPy 端 ----
# 为保证初值一致,这里必须复制 Paddle 入参的 numpy 值再传给参考实现
np_inputs = {
k: (paddle_inputs[k].numpy().copy() if isinstance(paddle_inputs[k], paddle.Tensor) else paddle_inputs[k])
for k in paddle_inputs
}
# 调用自定义算子
# print("seq_lens_encoder_xpu_before: ", paddle_inputs["seq_lens_encoder"])
out_pd = speculate_update_v3(**paddle_inputs)
# print("seq_lens_encoder_xpu_after: ", out_pd[0])
# print("not_need_stop: ", out_pd[2])
# speculate_update_v3 返回 5 个张量(与 Outputs 对应)
(
seq_lens_encoder_pd,
seq_lens_decoder_pd,
not_need_stop_pd,
draft_tokens_pd,
actual_draft_nums_pd,
) = out_pd
# print("seq_lens_encoder_np_before: ", np_inputs["seq_lens_encoder"])
out_np = speculate_update_v3_np(**np_inputs)
# print("seq_lens_encoder_np_after: ", out_np[0])
# print("not_need_stop: ", out_np[2])
# ---------------- 校对 ----------------
names = [
"seq_lens_encoder",
"seq_lens_decoder",
"not_need_stop",
"draft_tokens",
"actual_draft_token_nums",
]
pd_tensors = [
seq_lens_encoder_pd,
seq_lens_decoder_pd,
not_need_stop_pd,
draft_tokens_pd,
actual_draft_nums_pd,
]
for name, pd_val, np_val in zip(names, pd_tensors, out_np):
pd_arr = pd_val.numpy()
ok = np.array_equal(pd_arr, np_val)
print(f"{name:25s} equal :", ok)
# 也可以加 assert配合 pytest
# assert all(np.array_equal(p.numpy(), n) for p,n in zip(pd_tensors, out_np))