mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-05 16:48:03 +08:00
[Doc]Add English version of documents in examples/ (#1042)
* 第一次提交 * 补充一处漏翻译 * deleted: docs/en/quantize.md * Update one translation * Update en version * Update one translation in code * Standardize one writing * Standardize one writing * Update some en version * Fix a grammer problem * Update en version for api/vision result * Merge branch 'develop' of https://github.com/charl-u/FastDeploy into develop * Checkout the link in README in vision_results/ to the en documents * Modify a title * Add link to serving/docs/ * Finish translation of demo.md * Update english version of serving/docs/ * Update title of readme * Update some links * Modify a title * Update some links * Update en version of java android README * Modify some titles * Modify some titles * Modify some titles * modify article to document * update some english version of documents in examples * Add english version of documents in examples/visions * Sync to current branch * Add english version of documents in examples
This commit is contained in:
@@ -1,22 +1,23 @@
|
||||
English | [简体中文](README_CN.md)
|
||||
# C++推理
|
||||
|
||||
在运行demo前,需确认以下两个步骤
|
||||
Before running demo, the following two steps need to be confirmed:
|
||||
|
||||
- 1. 软硬件环境满足要求,参考[FastDeploy环境要求](../../../docs/cn/build_and_install/download_prebuilt_libraries.md)
|
||||
- 2. 根据开发环境,下载预编译部署库和samples代码,参考[FastDeploy预编译库](../../../docs/cn/build_and_install/download_prebuilt_libraries.md)
|
||||
- 1. Hardware and software environment meets the requirements. Please refer to [Environment requirements for FastDeploy](../../../docs/en/build_and_install/download_prebuilt_libraries.md).
|
||||
- 2. Download pre-compiled libraries and samples according to the development environment. Please refer to [FastDeploy pre-compiled libraries](../../../docs/cn/build_and_install/download_prebuilt_libraries.md).
|
||||
|
||||
本文档以 PaddleClas 分类模型 MobileNetV2 为例展示CPU上的推理示例
|
||||
This document shows an inference example on the CPU using the PaddleClas classification model MobileNetV2 as an example.
|
||||
|
||||
## 1. 获取模型
|
||||
## 1. Obtaining the Model
|
||||
|
||||
```bash
|
||||
wget https://bj.bcebos.com/fastdeploy/models/mobilenetv2.tgz
|
||||
tar xvf mobilenetv2.tgz
|
||||
```
|
||||
|
||||
## 2. 配置后端
|
||||
## 2. Backend Configuration
|
||||
|
||||
如下C++代码保存为`infer_paddle_onnxruntime.cc`
|
||||
The following C++ code is saved as `infer_paddle_onnxruntime.cc`.
|
||||
|
||||
``` c++
|
||||
#include "fastdeploy/runtime.h"
|
||||
@@ -66,35 +67,35 @@ int main(int argc, char* argv[]) {
|
||||
return 0;
|
||||
}
|
||||
```
|
||||
加载完成,会输出提示如下,说明初始化的后端,以及运行的硬件设备
|
||||
When loading is complete, the following prompt will be output, indicating the initialized backend, and the running hardware devices.
|
||||
```
|
||||
[INFO] fastdeploy/fastdeploy_runtime.cc(283)::Init Runtime initialized with Backend::OrtBackend in device Device::CPU.
|
||||
```
|
||||
|
||||
## 3. 准备CMakeLists.txt
|
||||
## 3. Prepare for CMakeLists.txt
|
||||
|
||||
FastDeploy中包含多个依赖库,直接采用`g++`或编译器编译较为繁杂,推荐使用cmake进行编译配置。示例配置如下,
|
||||
FastDeploy contains several dependencies, it is complicated to compile directly with `g++` or compiler, so we recommend using cmake for compiling configuration. The sample configuration is as follows:
|
||||
|
||||
```cmake
|
||||
PROJECT(runtime_demo C CXX)
|
||||
CMAKE_MINIMUM_REQUIRED (VERSION 3.12)
|
||||
|
||||
# 指定下载解压后的fastdeploy库路径
|
||||
# Specify the path to the fastdeploy library after downloading and unpacking.
|
||||
option(FASTDEPLOY_INSTALL_DIR "Path of downloaded fastdeploy sdk.")
|
||||
|
||||
include(${FASTDEPLOY_INSTALL_DIR}/FastDeploy.cmake)
|
||||
|
||||
# 添加FastDeploy依赖头文件
|
||||
# Add FastDeploy dependency headers.
|
||||
include_directories(${FASTDEPLOY_INCS})
|
||||
|
||||
add_executable(runtime_demo ${PROJECT_SOURCE_DIR}/infer_onnx_openvino.cc)
|
||||
# 添加FastDeploy库依赖
|
||||
# Adding FastDeploy library dependencies.
|
||||
target_link_libraries(runtime_demo ${FASTDEPLOY_LIBS})
|
||||
```
|
||||
|
||||
## 4. 编译可执行程序
|
||||
## 4. Compile executable program
|
||||
|
||||
打开命令行终端,进入`infer_paddle_onnxruntime.cc`和`CMakeLists.txt`所在的目录,执行如下命令
|
||||
Open the terminal, go to the directory where `infer_paddle_onnxruntime.cc` and `CMakeLists.txt` are located, and run the following command:
|
||||
|
||||
```bash
|
||||
mkdir build & cd build
|
||||
@@ -102,20 +103,20 @@ cmake .. -DFASTDEPLOY_INSTALL_DIR=$fastdeploy_cpp_sdk
|
||||
make -j
|
||||
```
|
||||
|
||||
```fastdeploy_cpp_sdk``` 为FastDeploy C++部署库路径
|
||||
```fastdeploy_cpp_sdk``` is path to FastDeploy C++ deployment libraries.
|
||||
|
||||
编译完成后,使用如下命令执行可得到预测结果
|
||||
After compiling, run the following command and get the results.
|
||||
```bash
|
||||
./runtime_demo
|
||||
```
|
||||
执行时如提示`error while loading shared libraries: libxxx.so: cannot open shared object file: No such file...`,说明程序执行时没有找到FastDeploy的库路径,可通过执行如下命令,将FastDeploy的库路径添加到环境变量之后,重新执行二进制程序。
|
||||
If you are prompted with `error while loading shared libraries: libxxx.so: cannot open shared object file: No such file... `, it means that the path to FastDeploy libraries is not found, you can run the program again after adding the path to the environment variable by executing the following command.
|
||||
```bash
|
||||
source /Path/to/fastdeploy_cpp_sdk/fastdeploy_init.sh
|
||||
```
|
||||
|
||||
本示例代码在各平台(Windows/Linux/Mac)上通用,但编译过程仅支持(Linux/Mac),Windows上使用msbuild进行编译,具体使用方式参考[Windows平台使用FastDeploy C++ SDK](../../../docs/cn/faq/use_sdk_on_windows.md)
|
||||
This sample code is common on all platforms (Windows/Linux/Mac), but the compilation process is only supported on (Linux/Mac),while using msbuild to compile on Windows. Please refer to [FastDeploy C++ SDK on Windows](../../../docs/en/faq/use_sdk_on_windows.md).
|
||||
|
||||
## 其它文档
|
||||
## Other Documents
|
||||
|
||||
- [Runtime Python 示例](../python)
|
||||
- [切换模型推理的硬件和后端](../../../docs/cn/faq/how_to_change_backend.md)
|
||||
- [A Python example for Runtime](../python)
|
||||
- [Switching hardware and backend for model inference](../../../docs/en/faq/how_to_change_backend.md)
|
||||
|
122
examples/runtime/cpp/README_CN.md
Normal file
122
examples/runtime/cpp/README_CN.md
Normal file
@@ -0,0 +1,122 @@
|
||||
简体中文 | [English](README.md)
|
||||
# C++推理
|
||||
|
||||
在运行demo前,需确认以下两个步骤
|
||||
|
||||
- 1. 软硬件环境满足要求,参考[FastDeploy环境要求](../../../docs/cn/build_and_install/download_prebuilt_libraries.md)
|
||||
- 2. 根据开发环境,下载预编译部署库和samples代码,参考[FastDeploy预编译库](../../../docs/cn/build_and_install/download_prebuilt_libraries.md)
|
||||
|
||||
本文档以 PaddleClas 分类模型 MobileNetV2 为例展示CPU上的推理示例
|
||||
|
||||
## 1. 获取模型
|
||||
|
||||
```bash
|
||||
wget https://bj.bcebos.com/fastdeploy/models/mobilenetv2.tgz
|
||||
tar xvf mobilenetv2.tgz
|
||||
```
|
||||
|
||||
## 2. 配置后端
|
||||
|
||||
如下C++代码保存为`infer_paddle_onnxruntime.cc`
|
||||
|
||||
``` c++
|
||||
#include "fastdeploy/runtime.h"
|
||||
|
||||
namespace fd = fastdeploy;
|
||||
|
||||
int main(int argc, char* argv[]) {
|
||||
std::string model_file = "mobilenetv2/inference.pdmodel";
|
||||
std::string params_file = "mobilenetv2/inference.pdiparams";
|
||||
|
||||
// setup option
|
||||
fd::RuntimeOption runtime_option;
|
||||
runtime_option.SetModelPath(model_file, params_file, fd::ModelFormat::PADDLE);
|
||||
runtime_option.UseOrtBackend();
|
||||
runtime_option.SetCpuThreadNum(12);
|
||||
// init runtime
|
||||
std::unique_ptr<fd::Runtime> runtime =
|
||||
std::unique_ptr<fd::Runtime>(new fd::Runtime());
|
||||
if (!runtime->Init(runtime_option)) {
|
||||
std::cerr << "--- Init FastDeploy Runitme Failed! "
|
||||
<< "\n--- Model: " << model_file << std::endl;
|
||||
return -1;
|
||||
} else {
|
||||
std::cout << "--- Init FastDeploy Runitme Done! "
|
||||
<< "\n--- Model: " << model_file << std::endl;
|
||||
}
|
||||
// init input tensor shape
|
||||
fd::TensorInfo info = runtime->GetInputInfo(0);
|
||||
info.shape = {1, 3, 224, 224};
|
||||
|
||||
std::vector<fd::FDTensor> input_tensors(1);
|
||||
std::vector<fd::FDTensor> output_tensors(1);
|
||||
|
||||
std::vector<float> inputs_data;
|
||||
inputs_data.resize(1 * 3 * 224 * 224);
|
||||
for (size_t i = 0; i < inputs_data.size(); ++i) {
|
||||
inputs_data[i] = std::rand() % 1000 / 1000.0f;
|
||||
}
|
||||
input_tensors[0].SetExternalData({1, 3, 224, 224}, fd::FDDataType::FP32, inputs_data.data());
|
||||
|
||||
//get input name
|
||||
input_tensors[0].name = info.name;
|
||||
|
||||
runtime->Infer(input_tensors, &output_tensors);
|
||||
|
||||
output_tensors[0].PrintInfo();
|
||||
return 0;
|
||||
}
|
||||
```
|
||||
加载完成,会输出提示如下,说明初始化的后端,以及运行的硬件设备
|
||||
```
|
||||
[INFO] fastdeploy/fastdeploy_runtime.cc(283)::Init Runtime initialized with Backend::OrtBackend in device Device::CPU.
|
||||
```
|
||||
|
||||
## 3. 准备CMakeLists.txt
|
||||
|
||||
FastDeploy中包含多个依赖库,直接采用`g++`或编译器编译较为繁杂,推荐使用cmake进行编译配置。示例配置如下,
|
||||
|
||||
```cmake
|
||||
PROJECT(runtime_demo C CXX)
|
||||
CMAKE_MINIMUM_REQUIRED (VERSION 3.12)
|
||||
|
||||
# 指定下载解压后的fastdeploy库路径
|
||||
option(FASTDEPLOY_INSTALL_DIR "Path of downloaded fastdeploy sdk.")
|
||||
|
||||
include(${FASTDEPLOY_INSTALL_DIR}/FastDeploy.cmake)
|
||||
|
||||
# 添加FastDeploy依赖头文件
|
||||
include_directories(${FASTDEPLOY_INCS})
|
||||
|
||||
add_executable(runtime_demo ${PROJECT_SOURCE_DIR}/infer_onnx_openvino.cc)
|
||||
# 添加FastDeploy库依赖
|
||||
target_link_libraries(runtime_demo ${FASTDEPLOY_LIBS})
|
||||
```
|
||||
|
||||
## 4. 编译可执行程序
|
||||
|
||||
打开命令行终端,进入`infer_paddle_onnxruntime.cc`和`CMakeLists.txt`所在的目录,执行如下命令
|
||||
|
||||
```bash
|
||||
mkdir build & cd build
|
||||
cmake .. -DFASTDEPLOY_INSTALL_DIR=$fastdeploy_cpp_sdk
|
||||
make -j
|
||||
```
|
||||
|
||||
```fastdeploy_cpp_sdk``` 为FastDeploy C++部署库路径
|
||||
|
||||
编译完成后,使用如下命令执行可得到预测结果
|
||||
```bash
|
||||
./runtime_demo
|
||||
```
|
||||
执行时如提示`error while loading shared libraries: libxxx.so: cannot open shared object file: No such file...`,说明程序执行时没有找到FastDeploy的库路径,可通过执行如下命令,将FastDeploy的库路径添加到环境变量之后,重新执行二进制程序。
|
||||
```bash
|
||||
source /Path/to/fastdeploy_cpp_sdk/fastdeploy_init.sh
|
||||
```
|
||||
|
||||
本示例代码在各平台(Windows/Linux/Mac)上通用,但编译过程仅支持(Linux/Mac),Windows上使用msbuild进行编译,具体使用方式参考[Windows平台使用FastDeploy C++ SDK](../../../docs/cn/faq/use_sdk_on_windows.md)
|
||||
|
||||
## 其它文档
|
||||
|
||||
- [Runtime Python 示例](../python)
|
||||
- [切换模型推理的硬件和后端](../../../docs/cn/faq/how_to_change_backend.md)
|
Reference in New Issue
Block a user