[Model] add function for setting anchor rknpu2 (#1728)

* add function for setting anchor rknpu2
add more demo for rknpu2
fixed md error

* Update config.h

---------

Co-authored-by: DefTruth <31974251+DefTruth@users.noreply.github.com>
This commit is contained in:
Zheng-Bicheng
2023-04-04 20:33:06 +08:00
committed by GitHub
parent a2141d0d2c
commit 109d1046ae
15 changed files with 551 additions and 96 deletions

View File

@@ -93,6 +93,9 @@ class RKYOLOPostprocessor:
"""
return self._postprocessor.run(runtime_results)
def set_anchor(self, anchor):
self._postprocessor.set_anchor(anchor)
@property
def conf_threshold(self):
"""
@@ -135,16 +138,16 @@ class RKYOLOPostprocessor:
"The value to set `nms_threshold` must be type of float."
self._postprocessor.class_num = class_num
class RKYOLOV5(FastDeployModel):
def __init__(self,
model_file,
params_file="",
runtime_option=None,
model_format=ModelFormat.ONNX):
model_format=ModelFormat.RKNN):
"""Load a RKYOLOV5 model exported by RKYOLOV5.
:param model_file: (str)Path of model file, e.g ./yolov5.onnx
:param params_file: (str)Path of parameters file, e.g yolox/model.pdiparams, if the model_fomat is ModelFormat.ONNX, this param will be ignored, can be set as empty string
:param model_file: (str)Path of model file, e.g ./yolov5.rknn
:param params_file: (str)Path of parameters file, e.g , if the model_fomat is ModelFormat.ONNX, this param will be ignored, can be set as empty string
:param runtime_option: (fastdeploy.RuntimeOption)RuntimeOption for inference this model, if it's None, will use the default backend on CPU
:param model_format: (fastdeploy.ModelForamt)Model format of the loaded model
"""
@@ -194,3 +197,121 @@ class RKYOLOV5(FastDeployModel):
:return RKYOLOV5Postprocessor
"""
return self._model.postprocessor
class RKYOLOX(FastDeployModel):
def __init__(self,
model_file,
runtime_option=None,
model_format=ModelFormat.RKNN):
"""Load a RKYOLOX model exported by RKYOLOX.
:param model_file: (str)Path of model file, e.g ./yolox.rknn
:param runtime_option: (fastdeploy.RuntimeOption)RuntimeOption for inference this model, if it's None, will use the default backend on CPU
:param model_format: (fastdeploy.ModelForamt)Model format of the loaded model
"""
# 调用基函数进行backend_option的初始化
# 初始化后的option保存在self._runtime_option
super(RKYOLOX, self).__init__(runtime_option)
self._model = C.vision.detection.RKYOLOX(
model_file, self._runtime_option, model_format)
# 通过self.initialized判断整个模型的初始化是否成功
assert self.initialized, "RKYOLOV5 initialize failed."
def predict(self, input_image, conf_threshold=0.25, nms_iou_threshold=0.5):
"""Detect an input image
:param input_image: (numpy.ndarray)The input image data, 3-D array with layout HWC, BGR format
:param conf_threshold: confidence threshold for postprocessing, default is 0.25
:param nms_iou_threshold: iou threshold for NMS, default is 0.5
:return: DetectionResult
"""
self.postprocessor.conf_threshold = conf_threshold
self.postprocessor.nms_threshold = nms_iou_threshold
return self._model.predict(input_image)
def batch_predict(self, images):
"""Classify a batch of input image
:param im: (list of numpy.ndarray) The input image list, each element is a 3-D array with layout HWC, BGR format
:return list of DetectionResult
"""
return self._model.batch_predict(images)
@property
def preprocessor(self):
"""Get RKYOLOV5Preprocessor object of the loaded model
:return RKYOLOV5Preprocessor
"""
return self._model.preprocessor
@property
def postprocessor(self):
"""Get RKYOLOV5Postprocessor object of the loaded model
:return RKYOLOV5Postprocessor
"""
return self._model.postprocessor
class RKYOLOV7(FastDeployModel):
def __init__(self,
model_file,
runtime_option=None,
model_format=ModelFormat.RKNN):
"""Load a RKYOLOX model exported by RKYOLOV7.
:param model_file: (str)Path of model file, e.g ./yolov7.rknn
:param runtime_option: (fastdeploy.RuntimeOption)RuntimeOption for inference this model, if it's None, will use the default backend on CPU
:param model_format: (fastdeploy.ModelForamt)Model format of the loaded model
"""
# 调用基函数进行backend_option的初始化
# 初始化后的option保存在self._runtime_option
super(RKYOLOV7, self).__init__(runtime_option)
self._model = C.vision.detection.RKYOLOV7(
model_file, self._runtime_option, model_format)
# 通过self.initialized判断整个模型的初始化是否成功
assert self.initialized, "RKYOLOV5 initialize failed."
def predict(self, input_image, conf_threshold=0.25, nms_iou_threshold=0.5):
"""Detect an input image
:param input_image: (numpy.ndarray)The input image data, 3-D array with layout HWC, BGR format
:param conf_threshold: confidence threshold for postprocessing, default is 0.25
:param nms_iou_threshold: iou threshold for NMS, default is 0.5
:return: DetectionResult
"""
self.postprocessor.conf_threshold = conf_threshold
self.postprocessor.nms_threshold = nms_iou_threshold
return self._model.predict(input_image)
def batch_predict(self, images):
"""Classify a batch of input image
:param im: (list of numpy.ndarray) The input image list, each element is a 3-D array with layout HWC, BGR format
:return list of DetectionResult
"""
return self._model.batch_predict(images)
@property
def preprocessor(self):
"""Get RKYOLOV5Preprocessor object of the loaded model
:return RKYOLOV5Preprocessor
"""
return self._model.preprocessor
@property
def postprocessor(self):
"""Get RKYOLOV5Postprocessor object of the loaded model
:return RKYOLOV5Postprocessor
"""
return self._model.postprocessor