mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-05 16:48:03 +08:00
[XPU] Fixed the issue of performance degradation caused by enabling ENABLE_V1_KVCACHE_SCHEDULER (#3393)
* fix v1 schedule oom bug * fix v1 schedule oom bug
This commit is contained in:
@@ -15,10 +15,12 @@
|
||||
"""
|
||||
|
||||
import json
|
||||
import os
|
||||
from dataclasses import asdict, dataclass
|
||||
from dataclasses import fields as dataclass_fields
|
||||
from typing import Any, Dict, List, Optional
|
||||
import os
|
||||
|
||||
import paddle
|
||||
|
||||
from fastdeploy.config import (
|
||||
CacheConfig,
|
||||
@@ -866,7 +868,10 @@ class EngineArgs:
|
||||
if self.enable_chunked_prefill:
|
||||
self.max_num_batched_tokens = 2048
|
||||
else:
|
||||
if not int(os.getenv('ENABLE_V1_KVCACHE_SCHEDULER', '0')):
|
||||
if not int(os.getenv("ENABLE_V1_KVCACHE_SCHEDULER", "0")):
|
||||
self.max_num_batched_tokens = self.max_model_len
|
||||
else:
|
||||
if paddle.is_compiled_with_xpu():
|
||||
self.max_num_batched_tokens = self.max_model_len
|
||||
else:
|
||||
self.max_num_batched_tokens = 8192
|
||||
|
@@ -236,7 +236,10 @@ class Config:
|
||||
if self.cache_config.enable_chunked_prefill:
|
||||
self.max_num_batched_tokens = 2048
|
||||
else:
|
||||
if not int(os.getenv('ENABLE_V1_KVCACHE_SCHEDULER', '0')):
|
||||
if not int(os.getenv("ENABLE_V1_KVCACHE_SCHEDULER", "0")):
|
||||
self.max_num_batched_tokens = self.max_model_len
|
||||
else:
|
||||
if paddle.is_compiled_with_xpu():
|
||||
self.max_num_batched_tokens = self.max_model_len
|
||||
else:
|
||||
self.max_num_batched_tokens = 8192
|
||||
@@ -287,7 +290,7 @@ class Config:
|
||||
)
|
||||
|
||||
if not self.cache_config.enable_chunked_prefill:
|
||||
if not int(os.getenv('ENABLE_V1_KVCACHE_SCHEDULER', '0')):
|
||||
if not int(os.getenv("ENABLE_V1_KVCACHE_SCHEDULER", "0")):
|
||||
assert self.max_num_batched_tokens >= self.max_model_len, (
|
||||
f"max_num_batched_tokens: {self.max_num_batched_tokens} "
|
||||
f"should be larger than or equal to max_model_len: {self.max_model_len}"
|
||||
|
@@ -289,7 +289,7 @@ class ResourceManagerV1(ResourceManager):
|
||||
while self.waiting and token_budget > 0:
|
||||
if len(self.running) == self.max_num_seqs:
|
||||
break
|
||||
if self.config.enable_mm and self.exist_prefill(scheduled_reqs):
|
||||
if (self.config.enable_mm or paddle.is_compiled_with_xpu()) and self.exist_prefill(scheduled_reqs):
|
||||
break
|
||||
request = self.waiting[0]
|
||||
if request.status == RequestStatus.WAITING:
|
||||
|
@@ -383,15 +383,18 @@ class XPUModelRunner(ModelRunnerBase):
|
||||
|
||||
req_len = len(req_dicts)
|
||||
has_prefill_task = False
|
||||
has_decode_task = False
|
||||
for i in range(req_len):
|
||||
request = req_dicts[i]
|
||||
idx = request.idx
|
||||
if request.task_type.value == RequestType.PREFILL.value: # prefill task
|
||||
logger.debug(f"Handle prefill request {request} at idx {idx}")
|
||||
prefill_start_index = request.prefill_start_index
|
||||
prefill_end_index = request.prefill_end_index
|
||||
length = prefill_end_index - prefill_start_index
|
||||
input_ids = request.prompt_token_ids + request.output_token_ids
|
||||
logger.debug(
|
||||
f"Handle prefill request {request} at idx {idx} prefill_start_index {prefill_start_index} prefill_end_index {prefill_end_index} need_prefilled_token_num {len(input_ids)}"
|
||||
)
|
||||
self.share_inputs["input_ids"][idx : idx + 1, :length] = np.array(
|
||||
input_ids[prefill_start_index:prefill_end_index]
|
||||
)
|
||||
@@ -420,6 +423,8 @@ class XPUModelRunner(ModelRunnerBase):
|
||||
self.share_inputs["block_tables"][idx : idx + 1, :encoder_block_num] = np.array(
|
||||
request.block_tables, dtype="int32"
|
||||
)
|
||||
if self.share_inputs["is_block_step"][idx]: # has tasks to continue to decode
|
||||
has_decode_task = True
|
||||
continue
|
||||
else: # preempted task
|
||||
logger.debug(f"Handle preempted request {request} at idx {idx}")
|
||||
@@ -460,7 +465,7 @@ class XPUModelRunner(ModelRunnerBase):
|
||||
self.share_inputs["stop_seqs"][:stop_seqs_num, : len(request.get("stop_token_ids")[0])] = np.array(
|
||||
request.get("stop_token_ids"), dtype="int64"
|
||||
)
|
||||
if has_prefill_task:
|
||||
if has_prefill_task or has_decode_task:
|
||||
self.share_inputs["not_need_stop"][0] = True
|
||||
|
||||
def process_prefill_inputs(self, req_dicts: List[Request]):
|
||||
|
Reference in New Issue
Block a user