[fix] fix ep group all-reduce (#4140)

* [fix] fix ep group all-reduce

* [fix] fix clear/update lock not working when workers > 1

* [chore] add preemption triggered info log

* [fix] fix code style

* fix model_weights_signal (#4092)

* fix model_weights_signal

---------

Co-authored-by: Yuanle Liu <yuanlehome@163.com>
This commit is contained in:
李泳桦
2025-09-18 10:34:49 +08:00
committed by GitHub
parent cffde70949
commit 0fa28b1068
6 changed files with 41 additions and 26 deletions

View File

@@ -352,8 +352,12 @@ class ParallelConfig:
)
dist.collective._set_custom_gid(None)
# same ep group id
# dist.collective._set_custom_gid(self.data_parallel_size + tp_gid_offset)
# self.ep_group = dist.new_group(range(self.expert_parallel_size))
if self.enable_expert_parallel:
dist.collective._set_custom_gid(self.data_parallel_size + tp_gid_offset)
self.ep_group = dist.new_group(range(self.expert_parallel_size))
dist.collective._set_custom_gid(None)
logger.info(
f"data_parallel_size: {self.data_parallel_size}, tensor_parallel_size: {self.tensor_parallel_size}, expert_parallel_size: {self.expert_parallel_size}, data_parallel_rank: {self.data_parallel_rank}, tensor_parallel_rank: {self.tensor_parallel_rank}, expert_parallel_rank: {self.expert_parallel_rank}, tp_group: {self.tp_group}."
)

View File

@@ -120,6 +120,7 @@ class ResourceManagerV1(ResourceManager):
self._free_blocks(preempted_req)
preempted_req.cached_block_num = 0
self.to_be_rescheduled_request_id_set.add(preempted_req.request_id)
llm_logger.info(f"Preemption is triggered! Preempted request id: {preempted_req.request_id}")
preempted_reqs.append(preempted_req)
scheduled_reqs.append(self._prepare_preempt_task(preempted_req))
main_process_metrics.num_requests_waiting.inc(1)

View File

@@ -16,12 +16,12 @@
import inspect
import os
import threading
import time
import traceback
import uuid
import numpy as np
from filelock import FileLock
from fastdeploy import envs
from fastdeploy.config import ModelConfig
@@ -132,7 +132,7 @@ class EngineClient:
pid, max_connections=int(os.getenv("FD_DEALER_CONNECTIONS", 50))
)
self.connection_initialized = False
self.clear_update_lock = threading.Lock()
self.clear_update_lock = FileLock(f"/tmp/fd_weight_clear_update_lock__pid{pid}_port{port}.lock")
def create_zmq_client(self, model, mode):
"""
@@ -351,7 +351,9 @@ class EngineClient:
if self.model_weights_status_signal.value[0] == ModelWeightsStatus.NORMAL:
return True, ""
if self.model_weights_status_signal.value[0] == ModelWeightsStatus.UPDATING:
return False, "updating model weight already"
return False, "worker is updating model weight already"
if self.model_weights_status_signal.value[0] == ModelWeightsStatus.CLEARING:
return False, "worker is clearing model weight, cannot update now"
self.model_weights_status_signal.value[0] = ModelWeightsStatus.UPDATING
if self.enable_prefix_caching or self.enable_splitwise:
@@ -395,7 +397,9 @@ class EngineClient:
if self.model_weights_status_signal.value[0] == ModelWeightsStatus.CLEARED:
return True, ""
if self.model_weights_status_signal.value[0] == ModelWeightsStatus.CLEARING:
return False, "clearing model weight already"
return False, "worker is clearing model weight already"
if self.model_weights_status_signal.value[0] == ModelWeightsStatus.UPDATING:
return False, "worker is updating model weight, cannot clear now"
self.model_weights_status_signal.value[0] = ModelWeightsStatus.CLEARING
if self.enable_prefix_caching or self.enable_splitwise:

View File

@@ -297,7 +297,7 @@ class CutlassMoEMethod(UnquantizedFusedMoEMethod):
)
if layer.reduce_results and layer.tp_size > 1:
tensor_model_parallel_all_reduce(fused_moe_out)
tensor_model_parallel_all_reduce(fused_moe_out, layer.fd_config.parallel_config.tp_group)
return fused_moe_out

View File

@@ -220,23 +220,17 @@ class DynamicWeightManager:
check model weights status
"""
logger.info(f"dynamic weight manager is check model weights status! {model_weights_status.value[0]}")
is_stop = 0
while model_weights_status.value[0] != ModelWeightsStatus.NORMAL:
if model_weights_status.value[0] == ModelWeightsStatus.UPDATING:
logger.info("infer engine stopped! start to load new checkpoint...")
model_runner.update_parameters(pid)
while model_weights_status.value[0] != ModelWeightsStatus.NORMAL:
time.sleep(0.01)
logger.info("finished loading new checkpoint")
elif model_weights_status.value[0] == ModelWeightsStatus.CLEARING:
logger.info("infer engine stopped! start to clear checkpoint...")
model_runner.clear_parameters(pid)
while True:
if model_weights_status.value[0] == ModelWeightsStatus.NORMAL:
logger.info("finished loading new checkpoint")
break
elif is_stop == 1 or (model_weights_status.value[0] == ModelWeightsStatus.CLEARED and is_stop == 0):
if is_stop == 0:
while model_weights_status.value[0] != ModelWeightsStatus.CLEARED:
time.sleep(0.01)
logger.info("finished clearing checkpoint")
is_stop = 1
time.sleep(0.001)
break
else:
time.sleep(0.001)
time.sleep(0.01)

View File

@@ -270,6 +270,11 @@ class PaddleDisWorkerProc:
create=False,
)
def _broadcast_model_weights_signal(self, src: int, group) -> int:
model_weights_signal_tensor = paddle.full(shape=[1], fill_value=self.model_weights_signal[0], dtype="int32")
paddle.distributed.broadcast(model_weights_signal_tensor, src=src, group=group)
return model_weights_signal_tensor.item()
def event_loop_normal(self) -> None:
"""Main event loop for Paddle Distrubuted Workers.
TODO(gongshaotian): support remote calling of functions that control worker.
@@ -279,15 +284,19 @@ class PaddleDisWorkerProc:
req_ids = []
num_running_requests = 0
local_rank = self.local_rank % self.parallel_config.tensor_parallel_size
self.model_weights_signal = paddle.zeros([1], dtype=paddle.int32)
self.model_weights_signal = np.zeros([1], dtype=np.int32)
while True:
if self.local_rank % self.parallel_config.tensor_parallel_size == 0:
if self.model_weights_status.value[0] != ModelWeightsStatus.NORMAL:
self.model_weights_signal[0] = int(self.model_weights_status.value[0])
if self.fd_config.load_config.dynamic_load_weight and self.parallel_config.enable_expert_parallel:
paddle.distributed.broadcast(self.model_weights_signal, src=0, group=self.parallel_config.ep_group)
if self.fd_config.load_config.dynamic_load_weight:
paddle.distributed.broadcast(self.model_weights_signal, src=0, group=self.parallel_config.tp_group)
self.model_weights_signal[0] = self._broadcast_model_weights_signal(
src=0, group=self.parallel_config.ep_group
)
if self.fd_config.load_config.dynamic_load_weight and self.parallel_config.tensor_parallel_size > 1:
self.model_weights_signal[0] = self._broadcast_model_weights_signal(
src=0, group=self.parallel_config.tp_group
)
self.insert_step = False
req_dicts = None
@@ -315,7 +324,9 @@ class PaddleDisWorkerProc:
else:
paddle.distributed.barrier(self.parallel_config.tp_group)
if self.model_weights_signal[0] != ModelWeightsStatus.NORMAL:
logger.info(f"Rank: {self.local_rank} has updated parameters.")
logger.info(
f"Rank: {self.local_rank} to update or clear parameters, signal is {self.model_weights_signal[0]}, [-1:clear, 1:update]"
)
from fastdeploy.rl.dynamic_weight_manager import (
DynamicWeightManager,
)
@@ -327,6 +338,7 @@ class PaddleDisWorkerProc:
self.parallel_config.engine_worker_queue_port,
)
self.model_weights_signal[0] = ModelWeightsStatus.NORMAL
logger.info(f"Rank: {self.local_rank} has updated or cleared parameters.")
if self.exist_task_signal.value[0] == ExistTaskStatus.EXIST or self.task_queue.read_finish_flag.get() == 1:
logger.info(f"Rank: {self.local_rank} Detected new requests.")