mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-06 09:07:10 +08:00
Create README_EN.md
This commit is contained in:
83
examples/vision/detection/yolov7/python/README_EN.md
Normal file
83
examples/vision/detection/yolov7/python/README_EN.md
Normal file
@@ -0,0 +1,83 @@
|
||||
English | [简体中文](README.md)
|
||||
|
||||
# YOLOv7 Python Deployment Demo
|
||||
|
||||
Two steps before deployment:
|
||||
|
||||
- 1. The hardware and software environment meets the requirements. Please refer to [FastDeploy Environment Requirements](../../../../../docs_en/environment.md)
|
||||
- 2. Install FastDeploy Python whl package. Please refer to [FastDeploy Python Installation](../../../../../docs_en/quick_start)
|
||||
|
||||
|
||||
This doc provides a quick `infer.py` demo of YOLOv7 deployment on CPU/GPU, and accelerated GPU deployment by TensorRT. Run the following command:
|
||||
|
||||
```bash
|
||||
# Download sample deployment code
|
||||
git clone https://github.com/PaddlePaddle/FastDeploy.git
|
||||
cd examples/vision/detection/yolov7/python/
|
||||
|
||||
# Download yolov7 model files and test images
|
||||
wget https://bj.bcebos.com/paddlehub/fastdeploy/yolov7.onnx
|
||||
wget https://gitee.com/paddlepaddle/PaddleDetection/raw/release/2.4/demo/000000014439.jpg
|
||||
|
||||
# CPU Inference
|
||||
python infer.py --model yolov7.onnx --image 000000014439.jpg --device cpu
|
||||
# GPU
|
||||
python infer.py --model yolov7.onnx --image 000000014439.jpg --device gpu
|
||||
# GPU上使用TensorRT推理
|
||||
python infer.py --model yolov7.onnx --image 000000014439.jpg --device gpu --use_trt True
|
||||
```
|
||||
|
||||
The visualisation of the results is as follows.
|
||||
|
||||
<img width="640" src="https://user-images.githubusercontent.com/67993288/183847558-abcd9a57-9cd9-4891-b09a-710963c99b74.jpg">
|
||||
|
||||
## YOLOv7 Python Interface
|
||||
|
||||
```python
|
||||
fastdeploy.vision.detection.YOLOv7(model_file, params_file=None, runtime_option=None, model_format=Frontend.ONNX)
|
||||
```
|
||||
|
||||
YOLOv7 model loading and initialisation, with model_file being the exported ONNX model format.
|
||||
|
||||
**Parameters**
|
||||
|
||||
> * **model_file**(str): Model file path
|
||||
> * **params_file**(str): Parameter file path. If the model format is ONNX, the parameter can be filled with an empty string.
|
||||
> * **runtime_option**(RuntimeOption): Back-end inference configuration. The default is None, i.e. the default is applied
|
||||
> * **model_format**(Frontend): Model format. The default is ONNX format
|
||||
|
||||
### Predict Function
|
||||
|
||||
> ```python
|
||||
> YOLOv7.predict(image_data, conf_threshold=0.25, nms_iou_threshold=0.5)
|
||||
> ```
|
||||
>
|
||||
> Model prediction interface with direct output of detection results from the image input.
|
||||
>
|
||||
> **Parameters**
|
||||
>
|
||||
> > * **image_data**(np.ndarray): Input image. Images need to be in HWC or BGR format
|
||||
> > * **conf_threshold**(float): Filter threshold for detection box confidence
|
||||
> > * **nms_iou_threshold**(float): iou thresholds during NMS processing
|
||||
|
||||
> **Return**
|
||||
>
|
||||
> > Return to`fastdeploy.vision.DetectionResult`Struct. For more details, please refer to [Vision Model Results](../../../../../docs/api/vision_results/)
|
||||
|
||||
### Class Member Variables
|
||||
|
||||
#### Pre-processing parameters
|
||||
|
||||
Users can modify the following pre-processing parameters for their needs. This will affect the final reasoning and deployment results
|
||||
|
||||
> > * **size**(list[int]): This parameter modifies the 'resize' during preprocessing and contains two integer elements representing [width, height]. The default value is [640, 640].
|
||||
> > * **padding_value**(list[float]): This parameter modifies the value of the padding when resizing the image. It contains three floating-point elements, representing the values of the three channels. The default value is [114, 114, 114].
|
||||
> > * **is_no_pad**(bool): This parameter determines whether the image is resized by padding, `is_no_pad=ture` means no padding is used. The default value is `is_no_pad=false`.
|
||||
> > * **is_mini_pad**(bool): This parameter allows the width and height of the image after resize to be the closest value to the `size` member variable, which the pixel size of the padding can be divided by the `stride` member variable. The default value is `is_mini_pad=false`.
|
||||
> > * **stride**(int): Used with`stris_mini_pad` member value. The default value is`stride=32`
|
||||
|
||||
## Related files
|
||||
|
||||
- [YOLOv7 Model Introduction](..)
|
||||
- [YOLOv7 C++ Deployment](../cpp)
|
||||
- [Vision Model Results](../../../../../docs_en/api/vision_results/)
|
Reference in New Issue
Block a user