[Executor]CUDAGraph support Speculate Decode (#4258)
Some checks failed
CE Compile Job / ce_job_pre_check (push) Has been cancelled
CE Compile Job / print_ce_job_pre_check_outputs (push) Has been cancelled
CE Compile Job / FD-Clone-Linux (push) Has been cancelled
CE Compile Job / Show Code Archive Output (push) Has been cancelled
CE Compile Job / BUILD_SM8090 (push) Has been cancelled
CE Compile Job / BUILD_SM8689 (push) Has been cancelled
CE Compile Job / CE_UPLOAD (push) Has been cancelled

* [Executor]CUDAGraph support Speculate Decode

* fix problem

* solve problem

* fix

* fast compile

* CUDAGraph + mtp support eb5(only target model)

* Revert "fast compile"

This reverts commit 3cfe8373ed.

* fix precommit

* solve comment

* fix comment about #pragram unroll

---------

Co-authored-by: gongshaotian <gstain5555@outlook.com>
Co-authored-by: gongshaotian <gstian5555@outlook.com>
This commit is contained in:
Jundong Liu
2025-10-13 15:21:41 +08:00
committed by GitHub
parent 07db281647
commit 0b7a5778ab
16 changed files with 265 additions and 134 deletions

View File

@@ -33,31 +33,33 @@ class Proposer(ABC):
the speculative decoding framework
"""
def __init__(self, cfg: FDConfig):
def __init__(self, fd_config: FDConfig):
"""
Init Speculative proposer
"""
cfg.parallel_config.tp_group = None
cfg.parallel_config.ep_group = None
self.cfg = deepcopy(cfg)
cfg.parallel_config.tp_group = dist.get_group(
cfg.parallel_config.data_parallel_rank + envs.FD_TP_GROUP_GID_OFFSET
fd_config.parallel_config.tp_group = None
fd_config.parallel_config.ep_group = None
self.fd_config = deepcopy(fd_config)
fd_config.parallel_config.tp_group = dist.get_group(
fd_config.parallel_config.data_parallel_rank + envs.FD_TP_GROUP_GID_OFFSET
)
cfg.parallel_config.ep_group = dist.get_group(
cfg.parallel_config.data_parallel_size + envs.FD_TP_GROUP_GID_OFFSET
fd_config.parallel_config.ep_group = dist.get_group(
fd_config.parallel_config.data_parallel_size + envs.FD_TP_GROUP_GID_OFFSET
)
self.cfg.parallel_config.tp_group = dist.get_group(
cfg.parallel_config.data_parallel_rank + envs.FD_TP_GROUP_GID_OFFSET
self.fd_config.parallel_config.tp_group = dist.get_group(
fd_config.parallel_config.data_parallel_rank + envs.FD_TP_GROUP_GID_OFFSET
)
self.cfg.parallel_config.ep_group = dist.get_group(
cfg.parallel_config.data_parallel_size + envs.FD_TP_GROUP_GID_OFFSET
self.fd_config.parallel_config.ep_group = dist.get_group(
fd_config.parallel_config.data_parallel_size + envs.FD_TP_GROUP_GID_OFFSET
)
self.parallel_config = self.cfg.parallel_config
self.model_config = self.cfg.model_config
self.speculative_config = self.cfg.speculative_config
self.cache_config = self.cfg.cache_config
self.quant_config = self.cfg.quant_config
self.parallel_config = self.fd_config.parallel_config
self.model_config = self.fd_config.model_config
self.speculative_config = self.fd_config.speculative_config
self.cache_config = self.fd_config.cache_config
self.quant_config = self.fd_config.quant_config
self.graph_opt_config = self.fd_config.graph_opt_config
self.scheduler_config = self.fd_config.scheduler_config
self.max_num_seqs = self.parallel_config.max_num_seqs
self.max_model_len = self.parallel_config.max_model_len

View File

@@ -22,6 +22,7 @@ import paddle
from paddleformers.utils.log import logger
from fastdeploy import envs
from fastdeploy.config import FDConfig
from fastdeploy.engine.request import Request, RequestType
from fastdeploy.model_executor.forward_meta import ForwardMeta
from fastdeploy.model_executor.layers.attention import get_attention_backend
@@ -31,6 +32,8 @@ from fastdeploy.model_executor.layers.attention.base_attention_backend import (
from fastdeploy.model_executor.layers.rotary_embedding import get_rope
from fastdeploy.model_executor.layers.sample.meta_data import SamplingMetadata
from fastdeploy.model_executor.layers.sample.sampler import MTPSampler
from fastdeploy.model_executor.model_loader import get_model_loader
from fastdeploy.model_executor.models import ModelForCasualLM
from fastdeploy.model_executor.ops.gpu import (
draft_model_postprocess,
draft_model_preprocess,
@@ -52,12 +55,19 @@ class MTPProposer(Proposer):
Proposer for Multi-Token-Prediction(MTP)
"""
def __init__(self, cfg, main_model, local_rank, device_id, target_model_inputs):
super().__init__(cfg)
def __init__(
self,
fd_config: FDConfig,
main_model: ModelForCasualLM,
local_rank: int,
device_id: int, # physical device id
target_model_inputs, # main model share inputs
):
super().__init__(fd_config)
self.num_main_model_layers = self.model_config.num_hidden_layers
self.local_rank = local_rank
self.device_id = device_id
self._update_cfg(main_model)
self._update_mtp_config(main_model)
self._load_model()
self.target_model_inputs = target_model_inputs
self.mtp_strategy = self.speculative_config.mtp_strategy
@@ -65,16 +75,22 @@ class MTPProposer(Proposer):
# [mixed, prefill, decoder]
self.role = "mixed"
self.sampler = MTPSampler(cfg)
self.sampler = MTPSampler(fd_config)
self._init_model_inputs()
# CUDA Graph
self.use_cudagraph = False # self.graph_opt_config.use_cudagraph
self.cudagraph_capture_sizes = list(reversed(self.graph_opt_config.cudagraph_capture_sizes))
self.sot_warmup_sizes = self.graph_opt_config.sot_warmup_sizes
self.attn_backends: list[AttentionBackend] = []
self._initialize_attn_backend()
def _update_cfg(self, main_model):
def _update_mtp_config(self, main_model):
"""
Update config for MTP from global config
"""
self.forward_meta: ForwardMeta = None
self.model_config.architectures[0] = self.model_config.architectures[0].replace("Moe", "MTP")
self.speculative_config.sharing_model = main_model
self.model_config.num_hidden_layers = 1
@@ -89,21 +105,18 @@ class MTPProposer(Proposer):
"""
Load MTP Layer
"""
from fastdeploy.model_executor.model_loader import get_model_loader
model_loader = get_model_loader(load_config=self.cfg.load_config)
self.model = model_loader.load_model(fd_config=self.cfg)
model_loader = get_model_loader(load_config=self.fd_config.load_config)
self.model = model_loader.load_model(fd_config=self.fd_config)
def dummy_prefill_inputs(self, num_tokens: int, batch_size: int, expected_decode_len: int):
"""Set dummy prefill inputs to model_inputs"""
max_dec_len = expected_decode_len + 1
self.num_gpu_blocks = self.parallel_config.total_block_num
self.initialize_kv_cache()
full_length = min(
input_length = min(
num_tokens // batch_size,
self.parallel_config.max_model_len - max_dec_len,
)
input_length = int(full_length * self.cache_config.kv_cache_ratio)
block_num = (
input_length + self.cache_config.block_size - 1
) // self.cache_config.block_size + self.cache_config.enc_dec_block_num
@@ -125,13 +138,15 @@ class MTPProposer(Proposer):
)
self.model_inputs["seq_lens_this_time"] = self.seq_lens_this_time_buffer
def initialize_kv_cache(self):
def initialize_kv_cache(self, main_model_num_blocks, profile: bool = False):
"""
Initialize kv cache
"""
# prompt cache
self.num_gpu_blocks = int(main_model_num_blocks * self.speculative_config.num_gpu_block_expand_ratio)
self.cache_kvs = {}
# Get kv cache dtype
cache_type = self.parallel_config.dtype
kv_cache_quant_type = None
@@ -151,9 +166,7 @@ class MTPProposer(Proposer):
kv_cache_scale_shape = [kv_cache_shape[0], kv_cache_shape[1], kv_cache_shape[2]]
local_rank = self.local_rank % self.parallel_config.tensor_parallel_size
if not self.parallel_config.do_profile and (
self.cache_config.enable_prefix_caching or self.parallel_config.splitwise_role != "mixed"
):
if not profile and (self.cache_config.enable_prefix_caching or self.parallel_config.splitwise_role != "mixed"):
cache_kvs_list = []
for i in range(
self.num_main_model_layers,
@@ -230,7 +243,7 @@ class MTPProposer(Proposer):
# Get the attention backend
attn_cls = get_attention_backend()
attn_backend = attn_cls(
self.cfg,
self.fd_config,
kv_num_heads=self.model_config.kv_num_heads,
num_heads=num_heads,
head_dim=head_dim,
@@ -243,7 +256,7 @@ class MTPProposer(Proposer):
)
self.attn_backends.append(attn_backend)
def clear_dummy_input(self):
def clear_mtp_cache(self):
"""
Clear allocated cacheKV
"""
@@ -251,15 +264,14 @@ class MTPProposer(Proposer):
if self.forward_meta is not None:
del self.forward_meta.caches
def update_block_num(self, num_gpu_blocks) -> None:
def update_mtp_block_num(self, num_gpu_blocks) -> None:
"""
Update block num by theoretical calculation
Update MTP block num by theoretical calculation
"""
# Reset block table and kv cache with global block num
self.main_model_num_gpu_blocks = num_gpu_blocks
self.num_gpu_blocks = int(num_gpu_blocks * self.speculative_config.num_gpu_block_expand_ratio)
if not (self.cache_config.enable_prefix_caching or self.parallel_config.splitwise_role != "mixed"):
self.initialize_kv_cache()
self.initialize_kv_cache(main_model_num_blocks=self.main_model_num_gpu_blocks)
# Reset free list
free_list = list(
@@ -276,7 +288,6 @@ class MTPProposer(Proposer):
"free_list_len": paddle.full([1], self.free_list_len, dtype="int32"),
}
)
self.parallel_config.do_profile = False
def _init_model_inputs(self):
"""
@@ -300,6 +311,8 @@ class MTPProposer(Proposer):
self.model_inputs["stop_nums"] = paddle.clone(self.target_model_inputs["stop_nums"])
self.model_inputs["not_need_stop"] = paddle.to_tensor([False], dtype="bool", place="cpu")
self.model_inputs["pre_ids"] = paddle.clone(self.target_model_inputs["pre_ids"])
self.model_inputs["output_cum_offsets"] = paddle.clone(self.target_model_inputs["output_cum_offsets"])
self.model_inputs["output_padding_offset"] = paddle.clone(self.target_model_inputs["output_padding_offset"])
self.model_inputs["ids_remove_padding"] = paddle.clone(self.target_model_inputs["ids_remove_padding"])
self.model_inputs["batch_id_per_token"] = paddle.clone(self.target_model_inputs["batch_id_per_token"])
self.model_inputs["cu_seqlens_q"] = paddle.clone(self.target_model_inputs["cu_seqlens_q"])
@@ -308,6 +321,9 @@ class MTPProposer(Proposer):
self.model_inputs["decoder_tile_ids_per_batch"] = paddle.clone(
self.target_model_inputs["decoder_tile_ids_per_batch"]
)
self.model_inputs["target_hidden_states"] = paddle.full(
[self.max_model_len * self.fd_config.max_prefill_batch, self.model_config.hidden_size], 0, dtype="bfloat16"
)
tmp_position_ids = paddle.arange(self.parallel_config.max_model_len).reshape((1, -1))
self.model_inputs["rope_emb"] = get_rope(
@@ -443,9 +459,6 @@ class MTPProposer(Proposer):
"""
Process inputs for prefill tasks and insert it to model_inputs buffer
"""
# NOTE: Lazy initialize kv cache
if "caches" not in self.model_inputs:
self.initialize_kv_cache()
# TODO:Init role in initialize process
if req_dicts[-1].disaggregate_info is not None:
@@ -526,7 +539,7 @@ class MTPProposer(Proposer):
request.get("block_tables"), dtype="int32"
)
self.model_inputs["not_need_stop"][0] = True
self.model_inputs["seq_lens_this_time"] = self.seq_lens_this_time_buffer[:num_running_requests]
self.model_inputs["seq_lens_this_time"] = self.seq_lens_this_time_buffer
def _initialize_forward_meta(self):
"""
@@ -556,6 +569,33 @@ class MTPProposer(Proposer):
for attn_backend in self.attn_backends:
attn_backend.init_attention_metadata(self.forward_meta)
# Update Batch type for cuda graph
only_decode_batch = True
prefill_exists = None
# Mix ep in single node
if self.fd_config.parallel_config.use_ep and self.fd_config.parallel_config.splitwise_role == "mixed":
only_decode_batch_list = []
prefill_exists = self.exist_prefill()
paddle.distributed.all_gather_object(only_decode_batch_list, not prefill_exists)
only_decode_batch = all(only_decode_batch_list)
self.fd_config.model_config.moe_phase.phase = "decode" if only_decode_batch else "prefill"
self.forward_meta.step_use_cudagraph = (
self.use_cudagraph
and only_decode_batch
and not (prefill_exists if prefill_exists is not None else self.exist_prefill())
)
def exist_prefill(self):
"""
check whether prefill stage exist
"""
if int(paddle.max(self.model_inputs["seq_lens_encoder"])) != 0:
return 1
else:
return 0
def _prepare_inputs(self, full_hidden_states):
"""
Prepare MTP inputs
@@ -599,10 +639,8 @@ class MTPProposer(Proposer):
self.target_model_inputs["seq_lens_encoder"],
self.num_model_steps,
)
if isinstance(target_hidden_states, list):
target_hidden_states = target_hidden_states[0]
return target_hidden_states
self.model_inputs["target_hidden_states"].copy_(target_hidden_states, False)
def _post_process(self, sampled_token_ids):
"""
@@ -633,7 +671,7 @@ class MTPProposer(Proposer):
self.parallel_config.use_ep,
)
def _propose(self, target_hidden_states):
def _propose(self):
"""
Main process for MTP inference
"""
@@ -663,10 +701,15 @@ class MTPProposer(Proposer):
self.model_inputs["cu_seqlens_q"].copy_(cu_seqlens_q, False)
self.model_inputs["cu_seqlens_k"].copy_(cu_seqlens_k, False)
# for speculative decoding
self.model_inputs["output_cum_offsets"] = output_cum_offsets
self.model_inputs["output_padding_offset"] = output_padding_offset
self.model_inputs["output_cum_offsets"].copy_(output_cum_offsets, False)
self.model_inputs["output_padding_offset"].copy_(output_padding_offset, False)
# Initialize forward meta data
self._initialize_forward_meta()
# Padding inputs for cuda graph
self.padding_cudagraph_inputs()
# Get sampling metadata
self.sampling_metadata = SamplingMetadata(
temperature=self.model_inputs["temperature"],
@@ -687,9 +730,11 @@ class MTPProposer(Proposer):
model_output = self.model(
ids_remove_padding=self.model_inputs["ids_remove_padding"],
previous_hidden_states=target_hidden_states,
previous_hidden_states=self.model_inputs["target_hidden_states"],
forward_meta=self.forward_meta,
)
if self.use_cudagraph:
model_output = model_output[: self.real_token_num]
hidden_states = rebuild_padding(
model_output,
@@ -721,7 +766,7 @@ class MTPProposer(Proposer):
self._post_process(sampled_token_ids)
if substep != self.num_model_steps - 1:
target_hidden_states = self._get_self_hidden_states(hidden_states)
self._get_self_hidden_states(hidden_states)
else:
if hasattr(self.model, "empty_input_forward"):
self.model.empty_input_forward()
@@ -733,10 +778,7 @@ class MTPProposer(Proposer):
self.model_inputs["seq_lens_this_time"],
self.model_inputs["step_idx"],
)
if isinstance(target_hidden_states, list):
target_hidden_states = target_hidden_states[0]
return target_hidden_states
self.model_inputs["target_hidden_states"].copy_(target_hidden_states, False)
def update_task_chunk_prefill(self, task):
"""
@@ -821,8 +863,8 @@ class MTPProposer(Proposer):
def _run_impl(self, full_hidden_states):
""""""
target_hidden_states = self._prepare_inputs(full_hidden_states)
self._propose(target_hidden_states=target_hidden_states)
self._prepare_inputs(full_hidden_states)
self._propose()
self._update_status()
if self.hybrid_mode:
self._extend_draft_token_with_ngram_match()
@@ -830,3 +872,16 @@ class MTPProposer(Proposer):
def is_chunk_prefill_enabled(self):
""""""
return True
def padding_cudagraph_inputs(self) -> None:
"""
Clean buffers used for the CUDA graph when replaying the CUDA graph with the padded batch.
In FastDeploy, almost all input tensors have a buffer. So, just keep the buffer clean when replaying the CUDA graph with the padded batch.
"""
# In init_attention_metadata, the decode buffer has already been cleared
# To adapt to CUDA Graph, keep the forward pass at the maximum batch size.
if self.use_cudagraph:
self.forward_meta.seq_lens_this_time = self.seq_lens_this_time_buffer
self.real_token_num = self.forward_meta.ids_remove_padding.shape[0]
return

View File

@@ -29,8 +29,8 @@ class NgramProposer(Proposer):
Matching corresponding tokens in input and output as draft tokens.
"""
def __init__(self, cfg: FDConfig):
super().__init__(cfg)
def __init__(self, fd_config: FDConfig):
super().__init__(fd_config)
self.max_ngram_size = self.speculative_config.max_ngram_size
self.input_ids_len = paddle.zeros(shape=[self.max_num_seqs, 1], dtype="int64").cpu()