mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-05 00:33:03 +08:00
[Feat] support mixed ep (#2969)
Some checks failed
Deploy GitHub Pages / deploy (push) Has been cancelled
Some checks failed
Deploy GitHub Pages / deploy (push) Has been cancelled
* Support mixed ep * fix comment * fix comment * update mixep * fix conflict * fix typo * update * fix typo * fix code style * fix conflict
This commit is contained in:
@@ -18,7 +18,6 @@ from __future__ import annotations
|
||||
|
||||
import os
|
||||
from dataclasses import dataclass, field
|
||||
from enum import Enum
|
||||
from typing import Literal, Optional
|
||||
|
||||
from paddleformers.transformers.configuration_utils import PretrainedConfig
|
||||
@@ -30,13 +29,24 @@ from fastdeploy.utils import get_logger
|
||||
logger = get_logger("config", "config.log")
|
||||
|
||||
|
||||
class MoEPhase(Enum):
|
||||
class MoEPhase:
|
||||
"""
|
||||
The generation phase of the moe.
|
||||
"""
|
||||
|
||||
PREFILL = 1
|
||||
DECODER = 2
|
||||
def __init__(self, phase="prefill"):
|
||||
self._phase = phase
|
||||
|
||||
@property
|
||||
def phase(self):
|
||||
return self._phase
|
||||
|
||||
@phase.setter
|
||||
def phase(self, value):
|
||||
if value not in ["prefill", "decode"]:
|
||||
raise ValueError(f"The moe_phase is invalid, only support prefill and decode, but got {value}")
|
||||
else:
|
||||
self._phase = value
|
||||
|
||||
|
||||
class ErnieArchitectures:
|
||||
@@ -146,7 +156,7 @@ class ParallelConfig:
|
||||
):
|
||||
self.sequence_parallel = False # Whether to enable sequence parallelism.
|
||||
self.use_ep = False # Whether to enable Expert Parallelism
|
||||
self.moe_phase = MoEPhase.PREFILL # Generation phase
|
||||
self.moe_phase = MoEPhase("prefill") # Generation phase
|
||||
self.msg_queue_id = 1 # mesage queue id
|
||||
|
||||
self.tensor_parallel_rank = 0 # TP rank ID
|
||||
@@ -210,11 +220,11 @@ class ParallelConfig:
|
||||
setattr(self, key, value)
|
||||
self.use_ep = args["expert_parallel_size"] > 1
|
||||
if self.splitwise_role == "mixed":
|
||||
self.moe_phase = MoEPhase.PREFILL
|
||||
self.moe_phase = MoEPhase(phase="prefill")
|
||||
elif self.splitwise_role == "prefill":
|
||||
self.moe_phase = MoEPhase.PREFILL
|
||||
self.moe_phase = MoEPhase(phase="prefill")
|
||||
elif self.splitwise_role == "decode":
|
||||
self.moe_phase = MoEPhase.DECODER
|
||||
self.moe_phase = MoEPhase(phase="decode")
|
||||
else:
|
||||
raise NotImplementedError
|
||||
|
||||
|
@@ -43,9 +43,10 @@ class DeepEPEngine:
|
||||
num_max_dispatch_tokens_per_rank: int,
|
||||
hidden: int,
|
||||
num_experts: int,
|
||||
moe_phase: MoEPhase,
|
||||
ep_size: int,
|
||||
ep_rank: int,
|
||||
splitwise_role: str,
|
||||
moe_phase: MoEPhase,
|
||||
async_finish: bool = False,
|
||||
):
|
||||
"""
|
||||
@@ -65,24 +66,42 @@ class DeepEPEngine:
|
||||
self.hidden = hidden
|
||||
self.num_experts = num_experts
|
||||
self.num_local_experts = num_experts // ep_size
|
||||
self.moe_phase = moe_phase
|
||||
self.async_finish = async_finish
|
||||
|
||||
self.deepep_engine = None
|
||||
self.prefill_deepep_engine = None
|
||||
self.decode_deepep_engine = None
|
||||
|
||||
if moe_phase == MoEPhase.DECODER:
|
||||
logger.info("Initializing Low Latency Buffer")
|
||||
self.ep_config = Config(24, 6, 256)
|
||||
self.num_max_dispatch_tokens_per_rank = num_max_dispatch_tokens_per_rank
|
||||
|
||||
# In mixed EP mode on a single node, we dynamically switch between
|
||||
# high throughput and low latency modes.
|
||||
if splitwise_role == "mixed":
|
||||
# decode engine
|
||||
logger.info("Initializing Low Latency Buffer")
|
||||
self.get_low_latency_buffer()
|
||||
elif moe_phase == MoEPhase.PREFILL:
|
||||
self.deepep_engine = deep_ep.Buffer(
|
||||
# prefill engine
|
||||
self.prefill_deepep_engine = deep_ep.Buffer(
|
||||
self.group,
|
||||
int(5e8),
|
||||
0,
|
||||
low_latency_mode=False,
|
||||
num_qps_per_rank=1,
|
||||
)
|
||||
# In disaggregated mode on mutiple nodes, we either use
|
||||
# high throughput mode or low latency mode.
|
||||
else:
|
||||
if moe_phase.phase == "decode":
|
||||
logger.info("Initializing Low Latency Buffer")
|
||||
self.get_low_latency_buffer()
|
||||
elif moe_phase.phase == "prefill":
|
||||
self.prefill_deepep_engine = deep_ep.Buffer(
|
||||
self.group,
|
||||
int(5e8),
|
||||
0,
|
||||
low_latency_mode=False,
|
||||
num_qps_per_rank=1,
|
||||
)
|
||||
self.ep_config = Config(24, 6, 256)
|
||||
else:
|
||||
raise ValueError(f"Unknown generation phase {moe_phase}")
|
||||
|
||||
@@ -105,14 +124,14 @@ class DeepEPEngine:
|
||||
)
|
||||
# Allocate a buffer if not existed or not enough buffer size
|
||||
if (
|
||||
self.deepep_engine is None
|
||||
or self.deepep_engine.group != self.group
|
||||
or not self.deepep_engine.low_latency_mode
|
||||
or self.deepep_engine.num_rdma_bytes < num_rdma_bytes
|
||||
self.decode_deepep_engine is None
|
||||
or self.decode_deepep_engine.group != self.group
|
||||
or not self.decode_deepep_engine.low_latency_mode
|
||||
or self.decode_deepep_engine.num_rdma_bytes < num_rdma_bytes
|
||||
):
|
||||
# NOTES: for best performance, the QP number **must** be equal to the number of the local experts
|
||||
assert self.num_experts % self.ep_size == 0
|
||||
self.deepep_engine = deep_ep.Buffer(
|
||||
self.decode_deepep_engine = deep_ep.Buffer(
|
||||
self.group,
|
||||
0,
|
||||
num_rdma_bytes,
|
||||
@@ -149,7 +168,7 @@ class DeepEPEngine:
|
||||
handle,
|
||||
_,
|
||||
dispatch_hook,
|
||||
) = self.deepep_engine.low_latency_dispatch(
|
||||
) = self.decode_deepep_engine.low_latency_dispatch(
|
||||
hidden_states,
|
||||
topk_idx,
|
||||
expertwise_scale,
|
||||
@@ -174,8 +193,22 @@ class DeepEPEngine:
|
||||
Return:
|
||||
combined_hidden_states: [num_tokens, hidden]
|
||||
"""
|
||||
# TODO(@wufeisheng): Delete them when deepep in PaddlePaddle is fixed
|
||||
(
|
||||
src_info,
|
||||
layout_range,
|
||||
num_max_dispatch_tokens_per_rank,
|
||||
num_experts,
|
||||
) = handle
|
||||
handle = (
|
||||
src_info,
|
||||
layout_range,
|
||||
num_max_dispatch_tokens_per_rank,
|
||||
None,
|
||||
num_experts,
|
||||
)
|
||||
|
||||
combined_hidden_states, _, combine_hook = self.deepep_engine.low_latency_combine(
|
||||
combined_hidden_states, _, combine_hook = self.decode_deepep_engine.low_latency_combine(
|
||||
hidden_states,
|
||||
topk_idx,
|
||||
topk_weights,
|
||||
@@ -189,7 +222,7 @@ class DeepEPEngine:
|
||||
"""
|
||||
clean_low_latency_buffer
|
||||
"""
|
||||
self.deepep_engine.clean_low_latency_buffer(
|
||||
self.decode_deepep_engine.clean_low_latency_buffer(
|
||||
self.num_max_dispatch_tokens_per_rank, self.hidden, self.num_experts
|
||||
)
|
||||
|
||||
@@ -197,7 +230,11 @@ class DeepEPEngine:
|
||||
"""
|
||||
barrier_all
|
||||
"""
|
||||
self.deepep_engine.barrier_all()
|
||||
if self.prefill_deepep_engine is not None:
|
||||
self.prefill_deepep_engine.barrier_all()
|
||||
|
||||
if self.decode_deepep_engine is not None:
|
||||
self.decode_deepep_engine.barrier_all()
|
||||
|
||||
|
||||
class EPRunner:
|
||||
@@ -210,6 +247,7 @@ class EPRunner:
|
||||
top_k: int,
|
||||
hidden: int,
|
||||
num_experts: int,
|
||||
splitwise_role: str,
|
||||
moe_phase: MoEPhase,
|
||||
num_max_dispatch_tokens_per_rank: int = 1,
|
||||
ep_size: int = 1,
|
||||
@@ -223,9 +261,10 @@ class EPRunner:
|
||||
num_max_dispatch_tokens_per_rank=num_max_dispatch_tokens_per_rank,
|
||||
hidden=hidden,
|
||||
num_experts=num_experts + redundant_experts_num,
|
||||
moe_phase=moe_phase,
|
||||
ep_size=ep_size,
|
||||
ep_rank=ep_rank,
|
||||
splitwise_role=splitwise_role,
|
||||
moe_phase=moe_phase,
|
||||
)
|
||||
|
||||
def moe_select(self, layer: nn.Layer, gate_out: paddle.Tensor):
|
||||
@@ -286,15 +325,19 @@ class EPPrefillRunner(EPRunner):
|
||||
top_k: int,
|
||||
hidden: int,
|
||||
num_experts: int,
|
||||
splitwise_role: str,
|
||||
ep_size: int = 1,
|
||||
ep_rank: int = 0,
|
||||
redundant_experts_num: int = 0,
|
||||
moe_phase: MoEPhase = MoEPhase("prefill"),
|
||||
):
|
||||
super().__init__(
|
||||
top_k,
|
||||
hidden,
|
||||
num_experts,
|
||||
MoEPhase.PREFILL,
|
||||
splitwise_role,
|
||||
moe_phase,
|
||||
num_max_dispatch_tokens_per_rank=256,
|
||||
ep_size=ep_size,
|
||||
ep_rank=ep_rank,
|
||||
redundant_experts_num=redundant_experts_num,
|
||||
@@ -314,7 +357,7 @@ class EPPrefillRunner(EPRunner):
|
||||
num_tokens_per_expert,
|
||||
is_token_in_rank,
|
||||
_,
|
||||
) = self.ep_engine.deepep_engine.get_dispatch_layout(topk_idx, self.num_experts)
|
||||
) = self.ep_engine.prefill_deepep_engine.get_dispatch_layout(topk_idx, self.num_experts)
|
||||
|
||||
x_scale_tensor = kwargs.get("x_scale_tensor", None)
|
||||
dispatch_args = {
|
||||
@@ -327,7 +370,7 @@ class EPPrefillRunner(EPRunner):
|
||||
"topk_idx": topk_idx,
|
||||
"topk_weights": topk_weights,
|
||||
}
|
||||
return self.ep_engine.deepep_engine.dispatch(**dispatch_args)
|
||||
return self.ep_engine.prefill_deepep_engine.dispatch(**dispatch_args)
|
||||
|
||||
def combine(
|
||||
self,
|
||||
@@ -342,7 +385,7 @@ class EPPrefillRunner(EPRunner):
|
||||
"async_finish": self.ep_engine.async_finish,
|
||||
"topk_weights": recv_topk_weights,
|
||||
}
|
||||
fused_moe_out, _, _ = self.ep_engine.deepep_engine.combine(**combine_args)
|
||||
fused_moe_out, _, _ = self.ep_engine.prefill_deepep_engine.combine(**combine_args)
|
||||
|
||||
return fused_moe_out
|
||||
|
||||
@@ -357,16 +400,19 @@ class EPDecoderRunner(EPRunner):
|
||||
top_k: int,
|
||||
hidden: int,
|
||||
num_experts: int,
|
||||
splitwise_role: str,
|
||||
num_max_dispatch_tokens_per_rank: int,
|
||||
ep_size: int = 1,
|
||||
ep_rank: int = 0,
|
||||
redundant_experts_num: int = 0,
|
||||
moe_phase: MoEPhase = MoEPhase("decode"),
|
||||
):
|
||||
super().__init__(
|
||||
top_k,
|
||||
hidden,
|
||||
num_experts,
|
||||
MoEPhase.DECODER,
|
||||
splitwise_role,
|
||||
moe_phase,
|
||||
num_max_dispatch_tokens_per_rank,
|
||||
ep_size=ep_size,
|
||||
ep_rank=ep_rank,
|
||||
|
@@ -19,8 +19,6 @@ from abc import abstractmethod
|
||||
import paddle
|
||||
from paddle import nn
|
||||
|
||||
from fastdeploy.config import MoEPhase
|
||||
|
||||
from ..quantization.quant_base import QuantMethodBase
|
||||
|
||||
|
||||
@@ -45,25 +43,50 @@ class MoEMethodBase(QuantMethodBase):
|
||||
Init EP related module
|
||||
"""
|
||||
if layer.ep_size > 1:
|
||||
if layer.fd_config.parallel_config.moe_phase == MoEPhase.DECODER:
|
||||
from .ep import EPDecoderRunner
|
||||
if layer.fd_config.parallel_config.splitwise_role == "mixed":
|
||||
from .ep import EPDecoderRunner, EPPrefillRunner
|
||||
|
||||
self.ep_prefill_runner = EPPrefillRunner(
|
||||
layer.top_k,
|
||||
layer.hidden_size,
|
||||
layer.num_experts,
|
||||
layer.fd_config.parallel_config.splitwise_role,
|
||||
layer.ep_size,
|
||||
layer.ep_rank,
|
||||
layer.fd_config.model_config.redundant_experts_num,
|
||||
)
|
||||
self.ep_decoder_runner = EPDecoderRunner(
|
||||
layer.top_k,
|
||||
layer.hidden_size,
|
||||
layer.num_experts,
|
||||
layer.fd_config.parallel_config.splitwise_role,
|
||||
layer.fd_config.model_config.num_max_dispatch_tokens_per_rank,
|
||||
layer.ep_size,
|
||||
layer.ep_rank,
|
||||
layer.fd_config.model_config.redundant_experts_num,
|
||||
)
|
||||
else:
|
||||
if layer.fd_config.parallel_config.moe_phase == "prefill":
|
||||
from .ep import EPPrefillRunner
|
||||
|
||||
self.ep_prefill_runner = EPPrefillRunner(
|
||||
layer.top_k,
|
||||
layer.hidden_size,
|
||||
layer.num_experts,
|
||||
layer.fd_config.parallel_config.splitwise_role,
|
||||
layer.ep_size,
|
||||
layer.ep_rank,
|
||||
layer.fd_config.model_config.redundant_experts_num,
|
||||
)
|
||||
else:
|
||||
from .ep import EPDecoderRunner
|
||||
|
||||
self.ep_decoder_runner = EPDecoderRunner(
|
||||
layer.top_k,
|
||||
layer.hidden_size,
|
||||
layer.num_experts,
|
||||
layer.moe_config.num_max_dispatch_tokens_per_rank,
|
||||
layer.fd_config.parallel_config.splitwise_role,
|
||||
layer.ep_size,
|
||||
layer.ep_rank,
|
||||
layer.fd_config.model_config.redundant_experts_num,
|
||||
@@ -141,7 +164,7 @@ class MoEMethodBase(QuantMethodBase):
|
||||
Paddle Cutlass compute Fused MoE.
|
||||
"""
|
||||
if layer.ep_size > 1:
|
||||
if layer.fd_config.parallel_config.moe_phase == MoEPhase.PREFILL:
|
||||
if layer.fd_config.parallel_config.moe_phase.phase == "prefill":
|
||||
return self.apply_ep_prefill(layer, x, gate_out)
|
||||
else:
|
||||
return self.apply_ep_decode(layer, x, gate_out)
|
||||
|
@@ -794,6 +794,14 @@ class GPUModelRunner(ModelRunnerBase):
|
||||
# Update Batch type for cuda graph
|
||||
# TODO(gongshaotian): Use seq_lens_encoder to set is_decode_batch
|
||||
is_decode_batch = not ((self.share_inputs["seq_lens_this_time"] > 1).sum() > 0)
|
||||
|
||||
# mix ep in single node
|
||||
if self.fd_config.parallel_config.use_ep and self.fd_config.parallel_config.splitwise_role == "mixed":
|
||||
is_decode_batch_list = []
|
||||
paddle.distributed.all_gather_object(is_decode_batch_list, is_decode_batch)
|
||||
is_decode_batch = all(is_decode_batch_list)
|
||||
self.fd_config.parallel_config.moe_phase.phase = "decode" if is_decode_batch else "prefill"
|
||||
|
||||
self.forward_meta.step_use_cudagraph = self.use_cudagraph and is_decode_batch
|
||||
|
||||
# Initialzie attention meta data
|
||||
@@ -1163,16 +1171,18 @@ class GPUModelRunner(ModelRunnerBase):
|
||||
We plan to replace it with 'ModelForwardBatch'.
|
||||
intermediate_tensors:
|
||||
"""
|
||||
# NOTE(wufeisheng): For Expert Parallelism
|
||||
if not self.not_need_stop():
|
||||
self._execute_empty_input()
|
||||
return None
|
||||
|
||||
# 1. Prepare inputs of model and sampler.
|
||||
skip_idx_list = self._get_skip_idx(model_forward_batch)
|
||||
self._prepare_inputs()
|
||||
self.sampler.pre_process(skip_idx_list)
|
||||
|
||||
# NOTE(wufeisheng): If `not_need_stop`` is False, it means the current worker is in an idle state.
|
||||
# This logic is not used in TP (Tensor Parallelism) mode. However, in EP (Expert Parallelism) mode,
|
||||
# when there is data on other runner, the current runner is required to execute part of the model.
|
||||
if not self.not_need_stop():
|
||||
self._execute_empty_input()
|
||||
return None
|
||||
|
||||
# 2. Padding inputs for cuda graph
|
||||
self.padding_cudagraph_inputs()
|
||||
|
||||
|
Reference in New Issue
Block a user