[Feat] support mixed ep (#2969)
Some checks failed
Deploy GitHub Pages / deploy (push) Has been cancelled

* Support mixed ep

* fix comment

* fix comment

* update mixep

* fix conflict

* fix typo

* update

* fix typo

* fix code style

* fix conflict
This commit is contained in:
Longzhi Wang
2025-07-25 15:29:30 +08:00
committed by GitHub
parent 332154f504
commit 0700c90caa
4 changed files with 140 additions and 51 deletions

View File

@@ -43,9 +43,10 @@ class DeepEPEngine:
num_max_dispatch_tokens_per_rank: int,
hidden: int,
num_experts: int,
moe_phase: MoEPhase,
ep_size: int,
ep_rank: int,
splitwise_role: str,
moe_phase: MoEPhase,
async_finish: bool = False,
):
"""
@@ -65,26 +66,44 @@ class DeepEPEngine:
self.hidden = hidden
self.num_experts = num_experts
self.num_local_experts = num_experts // ep_size
self.moe_phase = moe_phase
self.async_finish = async_finish
self.deepep_engine = None
self.prefill_deepep_engine = None
self.decode_deepep_engine = None
if moe_phase == MoEPhase.DECODER:
self.ep_config = Config(24, 6, 256)
self.num_max_dispatch_tokens_per_rank = num_max_dispatch_tokens_per_rank
# In mixed EP mode on a single node, we dynamically switch between
# high throughput and low latency modes.
if splitwise_role == "mixed":
# decode engine
logger.info("Initializing Low Latency Buffer")
self.num_max_dispatch_tokens_per_rank = num_max_dispatch_tokens_per_rank
self.get_low_latency_buffer()
elif moe_phase == MoEPhase.PREFILL:
self.deepep_engine = deep_ep.Buffer(
# prefill engine
self.prefill_deepep_engine = deep_ep.Buffer(
self.group,
int(5e8),
0,
low_latency_mode=False,
num_qps_per_rank=1,
)
self.ep_config = Config(24, 6, 256)
# In disaggregated mode on mutiple nodes, we either use
# high throughput mode or low latency mode.
else:
raise ValueError(f"Unknown generation phase {moe_phase}")
if moe_phase.phase == "decode":
logger.info("Initializing Low Latency Buffer")
self.get_low_latency_buffer()
elif moe_phase.phase == "prefill":
self.prefill_deepep_engine = deep_ep.Buffer(
self.group,
int(5e8),
0,
low_latency_mode=False,
num_qps_per_rank=1,
)
else:
raise ValueError(f"Unknown generation phase {moe_phase}")
def get_low_latency_buffer(self):
"""
@@ -105,14 +124,14 @@ class DeepEPEngine:
)
# Allocate a buffer if not existed or not enough buffer size
if (
self.deepep_engine is None
or self.deepep_engine.group != self.group
or not self.deepep_engine.low_latency_mode
or self.deepep_engine.num_rdma_bytes < num_rdma_bytes
self.decode_deepep_engine is None
or self.decode_deepep_engine.group != self.group
or not self.decode_deepep_engine.low_latency_mode
or self.decode_deepep_engine.num_rdma_bytes < num_rdma_bytes
):
# NOTES: for best performance, the QP number **must** be equal to the number of the local experts
assert self.num_experts % self.ep_size == 0
self.deepep_engine = deep_ep.Buffer(
self.decode_deepep_engine = deep_ep.Buffer(
self.group,
0,
num_rdma_bytes,
@@ -149,7 +168,7 @@ class DeepEPEngine:
handle,
_,
dispatch_hook,
) = self.deepep_engine.low_latency_dispatch(
) = self.decode_deepep_engine.low_latency_dispatch(
hidden_states,
topk_idx,
expertwise_scale,
@@ -174,8 +193,22 @@ class DeepEPEngine:
Return:
combined_hidden_states: [num_tokens, hidden]
"""
# TODO(@wufeisheng): Delete them when deepep in PaddlePaddle is fixed
(
src_info,
layout_range,
num_max_dispatch_tokens_per_rank,
num_experts,
) = handle
handle = (
src_info,
layout_range,
num_max_dispatch_tokens_per_rank,
None,
num_experts,
)
combined_hidden_states, _, combine_hook = self.deepep_engine.low_latency_combine(
combined_hidden_states, _, combine_hook = self.decode_deepep_engine.low_latency_combine(
hidden_states,
topk_idx,
topk_weights,
@@ -189,7 +222,7 @@ class DeepEPEngine:
"""
clean_low_latency_buffer
"""
self.deepep_engine.clean_low_latency_buffer(
self.decode_deepep_engine.clean_low_latency_buffer(
self.num_max_dispatch_tokens_per_rank, self.hidden, self.num_experts
)
@@ -197,7 +230,11 @@ class DeepEPEngine:
"""
barrier_all
"""
self.deepep_engine.barrier_all()
if self.prefill_deepep_engine is not None:
self.prefill_deepep_engine.barrier_all()
if self.decode_deepep_engine is not None:
self.decode_deepep_engine.barrier_all()
class EPRunner:
@@ -210,6 +247,7 @@ class EPRunner:
top_k: int,
hidden: int,
num_experts: int,
splitwise_role: str,
moe_phase: MoEPhase,
num_max_dispatch_tokens_per_rank: int = 1,
ep_size: int = 1,
@@ -223,9 +261,10 @@ class EPRunner:
num_max_dispatch_tokens_per_rank=num_max_dispatch_tokens_per_rank,
hidden=hidden,
num_experts=num_experts + redundant_experts_num,
moe_phase=moe_phase,
ep_size=ep_size,
ep_rank=ep_rank,
splitwise_role=splitwise_role,
moe_phase=moe_phase,
)
def moe_select(self, layer: nn.Layer, gate_out: paddle.Tensor):
@@ -286,15 +325,19 @@ class EPPrefillRunner(EPRunner):
top_k: int,
hidden: int,
num_experts: int,
splitwise_role: str,
ep_size: int = 1,
ep_rank: int = 0,
redundant_experts_num: int = 0,
moe_phase: MoEPhase = MoEPhase("prefill"),
):
super().__init__(
top_k,
hidden,
num_experts,
MoEPhase.PREFILL,
splitwise_role,
moe_phase,
num_max_dispatch_tokens_per_rank=256,
ep_size=ep_size,
ep_rank=ep_rank,
redundant_experts_num=redundant_experts_num,
@@ -314,7 +357,7 @@ class EPPrefillRunner(EPRunner):
num_tokens_per_expert,
is_token_in_rank,
_,
) = self.ep_engine.deepep_engine.get_dispatch_layout(topk_idx, self.num_experts)
) = self.ep_engine.prefill_deepep_engine.get_dispatch_layout(topk_idx, self.num_experts)
x_scale_tensor = kwargs.get("x_scale_tensor", None)
dispatch_args = {
@@ -327,7 +370,7 @@ class EPPrefillRunner(EPRunner):
"topk_idx": topk_idx,
"topk_weights": topk_weights,
}
return self.ep_engine.deepep_engine.dispatch(**dispatch_args)
return self.ep_engine.prefill_deepep_engine.dispatch(**dispatch_args)
def combine(
self,
@@ -342,7 +385,7 @@ class EPPrefillRunner(EPRunner):
"async_finish": self.ep_engine.async_finish,
"topk_weights": recv_topk_weights,
}
fused_moe_out, _, _ = self.ep_engine.deepep_engine.combine(**combine_args)
fused_moe_out, _, _ = self.ep_engine.prefill_deepep_engine.combine(**combine_args)
return fused_moe_out
@@ -357,16 +400,19 @@ class EPDecoderRunner(EPRunner):
top_k: int,
hidden: int,
num_experts: int,
splitwise_role: str,
num_max_dispatch_tokens_per_rank: int,
ep_size: int = 1,
ep_rank: int = 0,
redundant_experts_num: int = 0,
moe_phase: MoEPhase = MoEPhase("decode"),
):
super().__init__(
top_k,
hidden,
num_experts,
MoEPhase.DECODER,
splitwise_role,
moe_phase,
num_max_dispatch_tokens_per_rank,
ep_size=ep_size,
ep_rank=ep_rank,