mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-07 09:31:35 +08:00
Add Benchmark test (#200)
* add ppcls benchmark * add ppcls benchmark * add ppcls benchmark * add ppcls benchmark * fixed txt path * resolve conflict * resolve conflict * deal with comments * Add enable_trt_fp16 option * Add OV backend for seg and det * fixed valid backends in ppdet * fixed valid backends in yolo * add copyright and rm Chinese Notes * add ppdet&ppseg&yolo benchmark * add cpu/gpu mem info Co-authored-by: Jason <jiangjiajun@baidu.com>
This commit is contained in:
170
benchmark/benchmark_ppcls.py
Normal file
170
benchmark/benchmark_ppcls.py
Normal file
@@ -0,0 +1,170 @@
|
||||
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import fastdeploy as fd
|
||||
import cv2
|
||||
import os
|
||||
import numpy as np
|
||||
import pynvml
|
||||
import psutil
|
||||
import GPUtil
|
||||
import time
|
||||
|
||||
|
||||
def parse_arguments():
|
||||
import argparse
|
||||
import ast
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument(
|
||||
"--model", required=True, help="Path of PaddleClas model.")
|
||||
parser.add_argument(
|
||||
"--image", type=str, required=False, help="Path of test image file.")
|
||||
parser.add_argument(
|
||||
"--cpu_num_thread",
|
||||
type=int,
|
||||
default=8,
|
||||
help="default number of cpu thread.")
|
||||
parser.add_argument(
|
||||
"--device_id", type=int, default=0, help="device(gpu) id")
|
||||
parser.add_argument(
|
||||
"--iter_num",
|
||||
required=True,
|
||||
type=int,
|
||||
default=300,
|
||||
help="number of iterations for computing performace.")
|
||||
parser.add_argument(
|
||||
"--device",
|
||||
default="cpu",
|
||||
help="Type of inference device, support 'cpu' or 'gpu'.")
|
||||
parser.add_argument(
|
||||
"--backend",
|
||||
type=str,
|
||||
default="ort",
|
||||
help="inference backend, ort, ov, trt, paddle.")
|
||||
parser.add_argument(
|
||||
"--enable_trt_fp16",
|
||||
type=bool,
|
||||
default=False,
|
||||
help="whether enable fp16 in trt backend")
|
||||
args = parser.parse_args()
|
||||
return args
|
||||
|
||||
|
||||
def build_option(args):
|
||||
option = fd.RuntimeOption()
|
||||
device = args.device
|
||||
backend = args.backend
|
||||
option.set_cpu_thread_num(args.cpu_num_thread)
|
||||
if device == "gpu":
|
||||
option.use_gpu(args.device_id)
|
||||
|
||||
if backend == "trt":
|
||||
assert device == "gpu", "the trt backend need device==gpu"
|
||||
option.use_trt_backend()
|
||||
if args.enable_trt_fp16:
|
||||
option.enable_trt_fp16()
|
||||
elif backend == "ov":
|
||||
assert device == "cpu", "the openvino backend need device==cpu"
|
||||
option.use_openvino_backend()
|
||||
elif backend == "paddle":
|
||||
option.use_paddle_backend()
|
||||
elif backend == "ort":
|
||||
option.use_ort_backend()
|
||||
else:
|
||||
print("%s is an unsupported backend" % backend)
|
||||
|
||||
return option
|
||||
|
||||
|
||||
def get_current_memory_mb(gpu_id=None):
|
||||
pid = os.getpid()
|
||||
p = psutil.Process(pid)
|
||||
info = p.memory_full_info()
|
||||
cpu_mem = info.uss / 1024. / 1024.
|
||||
gpu_mem = 0
|
||||
if gpu_id is not None:
|
||||
pynvml.nvmlInit()
|
||||
handle = pynvml.nvmlDeviceGetHandleByIndex(0)
|
||||
meminfo = pynvml.nvmlDeviceGetMemoryInfo(handle)
|
||||
gpu_mem = meminfo.used / 1024. / 1024.
|
||||
return cpu_mem, gpu_mem
|
||||
|
||||
|
||||
def get_current_gputil(gpu_id):
|
||||
GPUs = GPUtil.getGPUs()
|
||||
gpu_load = GPUs[gpu_id].load
|
||||
return gpu_load
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
|
||||
args = parse_arguments()
|
||||
option = build_option(args)
|
||||
model_file = os.path.join(args.model, "inference.pdmodel")
|
||||
params_file = os.path.join(args.model, "inference.pdiparams")
|
||||
config_file = os.path.join(args.model, "inference_cls.yaml")
|
||||
|
||||
gpu_id = args.device_id
|
||||
end2end_statis = list()
|
||||
cpu_mem, gpu_mem, gpu_util = 0, 0, 0
|
||||
if args.device == "cpu":
|
||||
file_path = args.model + "_model_" + args.backend + "_" + \
|
||||
args.device + "_" + str(args.cpu_num_thread) + ".txt"
|
||||
else:
|
||||
if args.enable_trt_fp16:
|
||||
file_path = args.model + "_model_" + \
|
||||
args.backend + "_fp16_" + args.device + ".txt"
|
||||
else:
|
||||
file_path = args.model + "_model_" + args.backend + "_" + args.device + ".txt"
|
||||
f = open(file_path, "w")
|
||||
f.writelines("===={}====: \n".format(file_path.split("/")[1][:-4]))
|
||||
|
||||
try:
|
||||
model = fd.vision.classification.PaddleClasModel(
|
||||
model_file, params_file, config_file, runtime_option=option)
|
||||
model.enable_record_time_of_runtime()
|
||||
for i in range(args.iter_num):
|
||||
im = cv2.imread(args.image)
|
||||
start = time.time()
|
||||
result = model.predict(im)
|
||||
end2end_statis.append(time.time() - start)
|
||||
gpu_util += get_current_gputil(gpu_id)
|
||||
cm, gm = get_current_memory_mb(gpu_id)
|
||||
cpu_mem += cm
|
||||
gpu_mem += gm
|
||||
|
||||
runtime_statis = model.print_statis_info_of_runtime()
|
||||
|
||||
warmup_iter = args.iter_num // 5
|
||||
repeat_iter = args.iter_num - warmup_iter
|
||||
end2end_statis = end2end_statis[warmup_iter:]
|
||||
|
||||
dump_result = dict()
|
||||
dump_result["runtime"] = runtime_statis["avg_time"] * 1000
|
||||
dump_result["end2end"] = np.mean(end2end_statis) * 1000
|
||||
dump_result["cpu_rss_mb"] = cpu_mem / repeat_iter
|
||||
dump_result["gpu_rss_mb"] = gpu_mem / repeat_iter
|
||||
dump_result["gpu_util"] = gpu_util / repeat_iter
|
||||
|
||||
f.writelines("Runtime(ms): {} \n".format(str(dump_result["runtime"])))
|
||||
f.writelines("End2End(ms): {} \n".format(str(dump_result["end2end"])))
|
||||
f.writelines("cpu_rss_mb: {} \n".format(
|
||||
str(dump_result["cpu_rss_mb"])))
|
||||
f.writelines("gpu_rss_mb: {} \n".format(
|
||||
str(dump_result["gpu_rss_mb"])))
|
||||
f.writelines("gpu_util: {} \n".format(str(dump_result["gpu_util"])))
|
||||
except:
|
||||
f.writelines("!!!!!Infer Failed\n")
|
||||
|
||||
f.close()
|
190
benchmark/benchmark_ppdet.py
Normal file
190
benchmark/benchmark_ppdet.py
Normal file
@@ -0,0 +1,190 @@
|
||||
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import fastdeploy as fd
|
||||
import cv2
|
||||
import os
|
||||
import numpy as np
|
||||
import datetime
|
||||
import json
|
||||
import pynvml
|
||||
import psutil
|
||||
import GPUtil
|
||||
import time
|
||||
|
||||
|
||||
def parse_arguments():
|
||||
import argparse
|
||||
import ast
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument(
|
||||
"--model", required=True, help="Path of PaddleDetection model.")
|
||||
parser.add_argument(
|
||||
"--image", type=str, required=False, help="Path of test image file.")
|
||||
parser.add_argument(
|
||||
"--cpu_num_thread",
|
||||
type=int,
|
||||
default=8,
|
||||
help="default number of cpu thread.")
|
||||
parser.add_argument(
|
||||
"--device_id", type=int, default=0, help="device(gpu) id")
|
||||
parser.add_argument(
|
||||
"--iter_num",
|
||||
required=True,
|
||||
type=int,
|
||||
default=300,
|
||||
help="number of iterations for computing performace.")
|
||||
parser.add_argument(
|
||||
"--device",
|
||||
default="cpu",
|
||||
help="Type of inference device, support 'cpu' or 'gpu'.")
|
||||
parser.add_argument(
|
||||
"--backend",
|
||||
type=str,
|
||||
default="ort",
|
||||
help="inference backend, ort, ov, trt, paddle.")
|
||||
parser.add_argument(
|
||||
"--enable_trt_fp16",
|
||||
type=bool,
|
||||
default=False,
|
||||
help="whether enable fp16 in trt backend")
|
||||
args = parser.parse_args()
|
||||
return args
|
||||
|
||||
|
||||
def build_option(args):
|
||||
option = fd.RuntimeOption()
|
||||
device = args.device
|
||||
backend = args.backend
|
||||
option.set_cpu_thread_num(args.cpu_num_thread)
|
||||
if device == "gpu":
|
||||
option.use_gpu(args.device_id)
|
||||
|
||||
if backend == "trt":
|
||||
assert device == "gpu", "the trt backend need device==gpu"
|
||||
option.use_trt_backend()
|
||||
if args.enable_trt_fp16:
|
||||
option.enable_trt_fp16()
|
||||
elif backend == "ov":
|
||||
assert device == "cpu", "the openvino backend need device==cpu"
|
||||
option.use_openvino_backend()
|
||||
elif backend == "paddle":
|
||||
option.use_paddle_backend()
|
||||
elif backend == "ort":
|
||||
option.use_ort_backend()
|
||||
else:
|
||||
print("%s is an unsupported backend" % backend)
|
||||
|
||||
return option
|
||||
|
||||
|
||||
def get_current_memory_mb(gpu_id=None):
|
||||
pid = os.getpid()
|
||||
p = psutil.Process(pid)
|
||||
info = p.memory_full_info()
|
||||
cpu_mem = info.uss / 1024. / 1024.
|
||||
gpu_mem = 0
|
||||
if gpu_id is not None:
|
||||
pynvml.nvmlInit()
|
||||
handle = pynvml.nvmlDeviceGetHandleByIndex(0)
|
||||
meminfo = pynvml.nvmlDeviceGetMemoryInfo(handle)
|
||||
gpu_mem = meminfo.used / 1024. / 1024.
|
||||
return cpu_mem, gpu_mem
|
||||
|
||||
|
||||
def get_current_gputil(gpu_id):
|
||||
GPUs = GPUtil.getGPUs()
|
||||
gpu_load = GPUs[gpu_id].load
|
||||
return gpu_load
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
|
||||
args = parse_arguments()
|
||||
option = build_option(args)
|
||||
model_file = os.path.join(args.model, "model.pdmodel")
|
||||
params_file = os.path.join(args.model, "model.pdiparams")
|
||||
config_file = os.path.join(args.model, "infer_cfg.yml")
|
||||
|
||||
gpu_id = args.device_id
|
||||
end2end_statis = list()
|
||||
cpu_mem, gpu_mem, gpu_util = 0, 0, 0
|
||||
if args.device == "cpu":
|
||||
file_path = args.model + "_model_" + args.backend + "_" + \
|
||||
args.device + "_" + str(args.cpu_num_thread) + ".txt"
|
||||
else:
|
||||
if args.enable_trt_fp16:
|
||||
file_path = args.model + "_model_" + args.backend + "_fp16_" + args.device + ".txt"
|
||||
else:
|
||||
file_path = args.model + "_model_" + args.backend + "_" + args.device + ".txt"
|
||||
f = open(file_path, "w")
|
||||
f.writelines("===={}====: \n".format(file_path.split("/")[1][:-4]))
|
||||
|
||||
try:
|
||||
if "ppyoloe" in args.model:
|
||||
model = fd.vision.detection.PPYOLOE(
|
||||
model_file, params_file, config_file, runtime_option=option)
|
||||
elif "picodet" in args.model:
|
||||
model = fd.vision.detection.PicoDet(
|
||||
model_file, params_file, config_file, runtime_option=option)
|
||||
elif "yolox" in args.model:
|
||||
model = fd.vision.detection.PaddleYOLOX(
|
||||
model_file, params_file, config_file, runtime_option=option)
|
||||
elif "yolov3" in args.model:
|
||||
model = fd.vision.detection.YOLOv3(
|
||||
model_file, params_file, config_file, runtime_option=option)
|
||||
elif "ppyolo_r50vd_dcn_1x_coco" in args.model or "ppyolov2_r101vd_dcn_365e_coco" in args.model:
|
||||
model = fd.vision.detection.PPYOLO(
|
||||
model_file, params_file, config_file, runtime_option=option)
|
||||
elif "faster_rcnn" in args.model:
|
||||
model = fd.vision.detection.FasterRCNN(
|
||||
model_file, params_file, config_file, runtime_option=option)
|
||||
else:
|
||||
raise Exception("model {} not support now in ppdet series".format(
|
||||
args.model))
|
||||
model.enable_record_time_of_runtime()
|
||||
for i in range(args.iter_num):
|
||||
im = cv2.imread(args.image)
|
||||
start = time.time()
|
||||
result = model.predict(im)
|
||||
end2end_statis.append(time.time() - start)
|
||||
gpu_util += get_current_gputil(gpu_id)
|
||||
cm, gm = get_current_memory_mb(gpu_id)
|
||||
cpu_mem += cm
|
||||
gpu_mem += gm
|
||||
|
||||
runtime_statis = model.print_statis_info_of_runtime()
|
||||
|
||||
warmup_iter = args.iter_num // 5
|
||||
repeat_iter = args.iter_num - warmup_iter
|
||||
end2end_statis = end2end_statis[warmup_iter:]
|
||||
|
||||
dump_result = dict()
|
||||
dump_result["runtime"] = runtime_statis["avg_time"] * 1000
|
||||
dump_result["end2end"] = np.mean(end2end_statis) * 1000
|
||||
dump_result["cpu_rss_mb"] = cpu_mem / repeat_iter
|
||||
dump_result["gpu_rss_mb"] = gpu_mem / repeat_iter
|
||||
dump_result["gpu_util"] = gpu_util / repeat_iter
|
||||
|
||||
f.writelines("Runtime(ms): {} \n".format(str(dump_result["runtime"])))
|
||||
f.writelines("End2End(ms): {} \n".format(str(dump_result["end2end"])))
|
||||
f.writelines("cpu_rss_mb: {} \n".format(
|
||||
str(dump_result["cpu_rss_mb"])))
|
||||
f.writelines("gpu_rss_mb: {} \n".format(
|
||||
str(dump_result["gpu_rss_mb"])))
|
||||
f.writelines("gpu_util: {} \n".format(str(dump_result["gpu_util"])))
|
||||
except:
|
||||
f.writelines("!!!!!Infer Failed\n")
|
||||
|
||||
f.close()
|
169
benchmark/benchmark_ppseg.py
Normal file
169
benchmark/benchmark_ppseg.py
Normal file
@@ -0,0 +1,169 @@
|
||||
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import fastdeploy as fd
|
||||
import cv2
|
||||
import os
|
||||
import numpy as np
|
||||
import pynvml
|
||||
import psutil
|
||||
import GPUtil
|
||||
import time
|
||||
|
||||
|
||||
def parse_arguments():
|
||||
import argparse
|
||||
import ast
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument(
|
||||
"--model", required=True, help="Path of PaddleSeg model.")
|
||||
parser.add_argument(
|
||||
"--image", type=str, required=False, help="Path of test image file.")
|
||||
parser.add_argument(
|
||||
"--cpu_num_thread",
|
||||
type=int,
|
||||
default=8,
|
||||
help="default number of cpu thread.")
|
||||
parser.add_argument(
|
||||
"--device_id", type=int, default=0, help="device(gpu) id")
|
||||
parser.add_argument(
|
||||
"--iter_num",
|
||||
required=True,
|
||||
type=int,
|
||||
default=300,
|
||||
help="number of iterations for computing performace.")
|
||||
parser.add_argument(
|
||||
"--device",
|
||||
default="cpu",
|
||||
help="Type of inference device, support 'cpu' or 'gpu'.")
|
||||
parser.add_argument(
|
||||
"--backend",
|
||||
type=str,
|
||||
default="ort",
|
||||
help="inference backend, ort, ov, trt, paddle.")
|
||||
parser.add_argument(
|
||||
"--enable_trt_fp16",
|
||||
type=bool,
|
||||
default=False,
|
||||
help="whether enable fp16 in trt backend")
|
||||
args = parser.parse_args()
|
||||
return args
|
||||
|
||||
|
||||
def build_option(args):
|
||||
option = fd.RuntimeOption()
|
||||
device = args.device
|
||||
backend = args.backend
|
||||
option.set_cpu_thread_num(args.cpu_num_thread)
|
||||
if device == "gpu":
|
||||
option.use_gpu(args.device_id)
|
||||
|
||||
if backend == "trt":
|
||||
assert device == "gpu", "the trt backend need device==gpu"
|
||||
option.use_trt_backend()
|
||||
if args.enable_trt_fp16:
|
||||
option.enable_trt_fp16()
|
||||
elif backend == "ov":
|
||||
assert device == "cpu", "the openvino backend need device==cpu"
|
||||
option.use_openvino_backend()
|
||||
elif backend == "paddle":
|
||||
option.use_paddle_backend()
|
||||
elif backend == "ort":
|
||||
option.use_ort_backend()
|
||||
else:
|
||||
print("%s is an unsupported backend" % backend)
|
||||
|
||||
return option
|
||||
|
||||
|
||||
def get_current_memory_mb(gpu_id=None):
|
||||
pid = os.getpid()
|
||||
p = psutil.Process(pid)
|
||||
info = p.memory_full_info()
|
||||
cpu_mem = info.uss / 1024. / 1024.
|
||||
gpu_mem = 0
|
||||
if gpu_id is not None:
|
||||
pynvml.nvmlInit()
|
||||
handle = pynvml.nvmlDeviceGetHandleByIndex(0)
|
||||
meminfo = pynvml.nvmlDeviceGetMemoryInfo(handle)
|
||||
gpu_mem = meminfo.used / 1024. / 1024.
|
||||
return cpu_mem, gpu_mem
|
||||
|
||||
|
||||
def get_current_gputil(gpu_id):
|
||||
GPUs = GPUtil.getGPUs()
|
||||
gpu_load = GPUs[gpu_id].load
|
||||
return gpu_load
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
|
||||
args = parse_arguments()
|
||||
option = build_option(args)
|
||||
model_file = os.path.join(args.model, "model.pdmodel")
|
||||
params_file = os.path.join(args.model, "model.pdiparams")
|
||||
config_file = os.path.join(args.model, "deploy.yaml")
|
||||
|
||||
gpu_id = args.device_id
|
||||
end2end_statis = list()
|
||||
cpu_mem, gpu_mem, gpu_util = 0, 0, 0
|
||||
if args.device == "cpu":
|
||||
file_path = args.model + "_model_" + args.backend + "_" + \
|
||||
args.device + "_" + str(args.cpu_num_thread) + ".txt"
|
||||
else:
|
||||
if args.enable_trt_fp16:
|
||||
file_path = args.model + "_model_" + args.backend + "_fp16_" + args.device + ".txt"
|
||||
else:
|
||||
file_path = args.model + "_model_" + args.backend + "_" + args.device + ".txt"
|
||||
f = open(file_path, "w")
|
||||
f.writelines("===={}====: \n".format(file_path.split("/")[1][:-4]))
|
||||
|
||||
try:
|
||||
model = fd.vision.segmentation.PaddleSegModel(
|
||||
model_file, params_file, config_file, runtime_option=option)
|
||||
model.enable_record_time_of_runtime()
|
||||
for i in range(args.iter_num):
|
||||
im = cv2.imread(args.image)
|
||||
start = time.time()
|
||||
result = model.predict(im)
|
||||
end2end_statis.append(time.time() - start)
|
||||
gpu_util += get_current_gputil(gpu_id)
|
||||
cm, gm = get_current_memory_mb(gpu_id)
|
||||
cpu_mem += cm
|
||||
gpu_mem += gm
|
||||
|
||||
runtime_statis = model.print_statis_info_of_runtime()
|
||||
|
||||
warmup_iter = args.iter_num // 5
|
||||
repeat_iter = args.iter_num - warmup_iter
|
||||
end2end_statis = end2end_statis[warmup_iter:]
|
||||
|
||||
dump_result = dict()
|
||||
dump_result["runtime"] = runtime_statis["avg_time"] * 1000
|
||||
dump_result["end2end"] = np.mean(end2end_statis) * 1000
|
||||
dump_result["cpu_rss_mb"] = cpu_mem / repeat_iter
|
||||
dump_result["gpu_rss_mb"] = gpu_mem / repeat_iter
|
||||
dump_result["gpu_util"] = gpu_util / repeat_iter
|
||||
|
||||
f.writelines("Runtime(ms): {} \n".format(str(dump_result["runtime"])))
|
||||
f.writelines("End2End(ms): {} \n".format(str(dump_result["end2end"])))
|
||||
f.writelines("cpu_rss_mb: {} \n".format(
|
||||
str(dump_result["cpu_rss_mb"])))
|
||||
f.writelines("gpu_rss_mb: {} \n".format(
|
||||
str(dump_result["gpu_rss_mb"])))
|
||||
f.writelines("gpu_util: {} \n".format(str(dump_result["gpu_util"])))
|
||||
except:
|
||||
f.writelines("!!!!!Infer Failed\n")
|
||||
|
||||
f.close()
|
183
benchmark/benchmark_yolo.py
Normal file
183
benchmark/benchmark_yolo.py
Normal file
@@ -0,0 +1,183 @@
|
||||
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import fastdeploy as fd
|
||||
import cv2
|
||||
import os
|
||||
import numpy as np
|
||||
import datetime
|
||||
import json
|
||||
import pynvml
|
||||
import psutil
|
||||
import GPUtil
|
||||
import time
|
||||
|
||||
|
||||
def parse_arguments():
|
||||
import argparse
|
||||
import ast
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument(
|
||||
"--model", required=True, help="Path of Yolo onnx model.")
|
||||
parser.add_argument(
|
||||
"--image", type=str, required=False, help="Path of test image file.")
|
||||
parser.add_argument(
|
||||
"--cpu_num_thread",
|
||||
type=int,
|
||||
default=8,
|
||||
help="default number of cpu thread.")
|
||||
parser.add_argument(
|
||||
"--device_id", type=int, default=0, help="device(gpu) id")
|
||||
parser.add_argument(
|
||||
"--iter_num",
|
||||
required=True,
|
||||
type=int,
|
||||
default=300,
|
||||
help="number of iterations for computing performace.")
|
||||
parser.add_argument(
|
||||
"--device",
|
||||
default="cpu",
|
||||
help="Type of inference device, support 'cpu' or 'gpu'.")
|
||||
parser.add_argument(
|
||||
"--backend",
|
||||
type=str,
|
||||
default="ort",
|
||||
help="inference backend, ort, ov, trt, paddle.")
|
||||
parser.add_argument(
|
||||
"--enable_trt_fp16",
|
||||
type=bool,
|
||||
default=False,
|
||||
help="whether enable fp16 in trt backend")
|
||||
args = parser.parse_args()
|
||||
return args
|
||||
|
||||
|
||||
def build_option(args):
|
||||
option = fd.RuntimeOption()
|
||||
device = args.device
|
||||
backend = args.backend
|
||||
option.set_cpu_thread_num(args.cpu_num_thread)
|
||||
if device == "gpu":
|
||||
option.use_gpu(args.device_id)
|
||||
|
||||
if backend == "trt":
|
||||
assert device == "gpu", "the trt backend need device==gpu"
|
||||
option.use_trt_backend()
|
||||
if args.enable_trt_fp16:
|
||||
option.enable_trt_fp16()
|
||||
elif backend == "ov":
|
||||
assert device == "cpu", "the openvino backend need device==cpu"
|
||||
option.use_openvino_backend()
|
||||
elif backend == "paddle":
|
||||
option.use_paddle_backend()
|
||||
elif backend == "ort":
|
||||
option.use_ort_backend()
|
||||
else:
|
||||
print("%s is an unsupported backend" % backend)
|
||||
|
||||
return option
|
||||
|
||||
|
||||
def get_current_memory_mb(gpu_id=None):
|
||||
pid = os.getpid()
|
||||
p = psutil.Process(pid)
|
||||
info = p.memory_full_info()
|
||||
cpu_mem = info.uss / 1024. / 1024.
|
||||
gpu_mem = 0
|
||||
if gpu_id is not None:
|
||||
pynvml.nvmlInit()
|
||||
handle = pynvml.nvmlDeviceGetHandleByIndex(0)
|
||||
meminfo = pynvml.nvmlDeviceGetMemoryInfo(handle)
|
||||
gpu_mem = meminfo.used / 1024. / 1024.
|
||||
return cpu_mem, gpu_mem
|
||||
|
||||
|
||||
def get_current_gputil(gpu_id):
|
||||
GPUs = GPUtil.getGPUs()
|
||||
gpu_load = GPUs[gpu_id].load
|
||||
return gpu_load
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
|
||||
args = parse_arguments()
|
||||
option = build_option(args)
|
||||
model_file = args.model
|
||||
|
||||
gpu_id = args.device_id
|
||||
end2end_statis = list()
|
||||
cpu_mem, gpu_mem, gpu_util = 0, 0, 0
|
||||
if args.device == "cpu":
|
||||
file_path = args.model + "_model_" + args.backend + "_" + \
|
||||
args.device + "_" + str(args.cpu_num_thread) + ".txt"
|
||||
else:
|
||||
if args.enable_trt_fp16:
|
||||
file_path = args.model + "_model_" + args.backend + "_fp16_" + args.device + ".txt"
|
||||
else:
|
||||
file_path = args.model + "_model_" + args.backend + "_" + args.device + ".txt"
|
||||
f = open(file_path, "w")
|
||||
f.writelines("===={}====: \n".format(file_path.split("/")[1][:-4]))
|
||||
|
||||
try:
|
||||
if "yolox" in model_file:
|
||||
model = fd.vision.detection.YOLOX(
|
||||
model_file, runtime_option=option)
|
||||
elif "yolov5" in model_file:
|
||||
model = fd.vision.detection.YOLOv5(
|
||||
model_file, runtime_option=option)
|
||||
elif "yolov6" in model_file:
|
||||
model = fd.vision.detection.YOLOv6(
|
||||
model_file, runtime_option=option)
|
||||
elif "yolov7" in model_file:
|
||||
model = fd.vision.detection.YOLOv7(
|
||||
model_file, runtime_option=option)
|
||||
else:
|
||||
raise Exception("model {} not support now in yolo series".format(
|
||||
args.model))
|
||||
model.enable_record_time_of_runtime()
|
||||
|
||||
for i in range(args.iter_num):
|
||||
im = cv2.imread(args.image)
|
||||
start = time.time()
|
||||
result = model.predict(im)
|
||||
end2end_statis.append(time.time() - start)
|
||||
gpu_util += get_current_gputil(gpu_id)
|
||||
cm, gm = get_current_memory_mb(gpu_id)
|
||||
cpu_mem += cm
|
||||
gpu_mem += gm
|
||||
|
||||
runtime_statis = model.print_statis_info_of_runtime()
|
||||
|
||||
warmup_iter = args.iter_num // 5
|
||||
repeat_iter = args.iter_num - warmup_iter
|
||||
end2end_statis = end2end_statis[warmup_iter:]
|
||||
|
||||
dump_result = dict()
|
||||
dump_result["runtime"] = runtime_statis["avg_time"] * 1000
|
||||
dump_result["end2end"] = np.mean(end2end_statis) * 1000
|
||||
dump_result["cpu_rss_mb"] = cpu_mem / repeat_iter
|
||||
dump_result["gpu_rss_mb"] = gpu_mem / repeat_iter
|
||||
dump_result["gpu_util"] = gpu_util / repeat_iter
|
||||
|
||||
f.writelines("Runtime(ms): {} \n".format(str(dump_result["runtime"])))
|
||||
f.writelines("End2End(ms): {} \n".format(str(dump_result["end2end"])))
|
||||
f.writelines("cpu_rss_mb: {} \n".format(
|
||||
str(dump_result["cpu_rss_mb"])))
|
||||
f.writelines("gpu_rss_mb: {} \n".format(
|
||||
str(dump_result["gpu_rss_mb"])))
|
||||
f.writelines("gpu_util: {} \n".format(str(dump_result["gpu_util"])))
|
||||
except:
|
||||
f.writelines("!!!!!Infer Failed\n")
|
||||
|
||||
f.close()
|
155
benchmark/convert_info.py
Normal file
155
benchmark/convert_info.py
Normal file
@@ -0,0 +1,155 @@
|
||||
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import os
|
||||
import argparse
|
||||
|
||||
parser = argparse.ArgumentParser(description='manual to this script')
|
||||
parser.add_argument('--txt_path', type=str, default='result.txt')
|
||||
parser.add_argument('--domain', type=str, default='ppcls')
|
||||
args = parser.parse_args()
|
||||
txt_path = args.txt_path
|
||||
domain = args.domain
|
||||
|
||||
f1 = open(txt_path, "r")
|
||||
lines = f1.readlines()
|
||||
line_nums = len(lines)
|
||||
ort_cpu_thread1 = dict()
|
||||
ort_cpu_thread8 = dict()
|
||||
ort_gpu = dict()
|
||||
ov_cpu_thread1 = dict()
|
||||
ov_cpu_thread8 = dict()
|
||||
paddle_cpu_thread1 = dict()
|
||||
paddle_cpu_thread8 = dict()
|
||||
paddle_gpu = dict()
|
||||
trt_gpu = dict()
|
||||
trt_gpu_fp16 = dict()
|
||||
model_name_set = set()
|
||||
|
||||
for i in range(line_nums):
|
||||
if "====" in lines[i]:
|
||||
model_name = lines[i].strip().split("_model")[0][4:]
|
||||
model_name_set.add(model_name)
|
||||
runtime = "-"
|
||||
end2end = "-"
|
||||
if "Runtime(ms)" in lines[i + 1]:
|
||||
runtime_ori = lines[i + 1].split(": ")[1]
|
||||
# two decimal places
|
||||
runtime_list = runtime_ori.split(".")
|
||||
runtime = runtime_list[0] + "." + runtime_list[1][:2]
|
||||
if "End2End(ms)" in lines[i + 2]:
|
||||
end2end_ori = lines[i + 2].split(": ")[1]
|
||||
# two decimal places
|
||||
end2end_list = end2end_ori.split(".")
|
||||
end2end = end2end_list[0] + "." + end2end_list[1][:2]
|
||||
if "cpu_rss_mb" in lines[i + 3]:
|
||||
cpu_rss_mb_ori = lines[i + 3].split(": ")[1]
|
||||
# two decimal places
|
||||
cpu_rss_mb_list = cpu_rss_mb_ori.split(".")
|
||||
cpu_rss_mb = cpu_rss_mb_list[0] + "." + cpu_rss_mb_list[1][:2]
|
||||
if "gpu_rss_mb" in lines[i + 4]:
|
||||
gpu_rss_mb_ori = lines[i + 4].split(": ")[1]
|
||||
# two decimal places
|
||||
gpu_rss_mb_list = gpu_rss_mb_ori.split(".")
|
||||
gpu_rss_mb = gpu_rss_mb_list[0] + "." + gpu_rss_mb_list[1][:2]
|
||||
if "ort_cpu_1" in lines[i]:
|
||||
ort_cpu_thread1[
|
||||
model_name] = runtime + "\t" + end2end + "\t" + cpu_rss_mb
|
||||
elif "ort_cpu_8" in lines[i]:
|
||||
ort_cpu_thread8[
|
||||
model_name] = runtime + "\t" + end2end + "\t" + cpu_rss_mb
|
||||
elif "ort_gpu" in lines[i]:
|
||||
ort_gpu[model_name] = runtime + "\t" + end2end + "\t" + gpu_rss_mb
|
||||
elif "ov_cpu_1" in lines[i]:
|
||||
ov_cpu_thread1[
|
||||
model_name] = runtime + "\t" + end2end + "\t" + cpu_rss_mb
|
||||
elif "ov_cpu_8" in lines[i]:
|
||||
ov_cpu_thread8[
|
||||
model_name] = runtime + "\t" + end2end + "\t" + cpu_rss_mb
|
||||
elif "paddle_cpu_1" in lines[i]:
|
||||
paddle_cpu_thread1[
|
||||
model_name] = runtime + "\t" + end2end + "\t" + cpu_rss_mb
|
||||
elif "paddle_cpu_8" in lines[i]:
|
||||
paddle_cpu_thread8[
|
||||
model_name] = runtime + "\t" + end2end + "\t" + cpu_rss_mb
|
||||
elif "paddle_gpu" in lines[i]:
|
||||
paddle_gpu[
|
||||
model_name] = runtime + "\t" + end2end + "\t" + gpu_rss_mb
|
||||
elif "trt_gpu" in lines[i]:
|
||||
trt_gpu[model_name] = runtime + "\t" + end2end + "\t" + gpu_rss_mb
|
||||
elif "trt_fp16_gpu" in lines[i]:
|
||||
trt_gpu_fp16[
|
||||
model_name] = runtime + "\t" + end2end + "\t" + gpu_rss_mb
|
||||
|
||||
f2 = open("struct_cpu_" + domain + ".txt", "w")
|
||||
f2.writelines(
|
||||
"model_name\tthread_nums\tort_run\tort_end2end\tcpu_rss_mb\tov_run\tov_end2end\tcpu_rss_mb\tpaddle_run\tpaddle_end2end\tcpu_rss_mb\n"
|
||||
)
|
||||
for model_name in model_name_set:
|
||||
lines1 = model_name + '\t1\t'
|
||||
lines2 = model_name + '\t8\t'
|
||||
if model_name in ort_cpu_thread1 and ort_cpu_thread1[model_name] != "":
|
||||
lines1 += ort_cpu_thread1[model_name] + '\t'
|
||||
else:
|
||||
lines1 += "-\t-\t-\t"
|
||||
if model_name in ov_cpu_thread1 and ov_cpu_thread1[model_name] != "":
|
||||
lines1 += ov_cpu_thread1[model_name] + '\t'
|
||||
else:
|
||||
lines1 += "-\t-\t-\t"
|
||||
if model_name in paddle_cpu_thread1 and paddle_cpu_thread1[
|
||||
model_name] != "":
|
||||
lines1 += paddle_cpu_thread1[model_name] + '\n'
|
||||
else:
|
||||
lines1 += "-\t-\t-\n"
|
||||
f2.writelines(lines1)
|
||||
if model_name in ort_cpu_thread8 and ort_cpu_thread8[model_name] != "":
|
||||
lines2 += ort_cpu_thread8[model_name] + '\t'
|
||||
else:
|
||||
lines2 += "-\t-\t-\t"
|
||||
if model_name in ov_cpu_thread8 and ov_cpu_thread8[model_name] != "":
|
||||
lines2 += ov_cpu_thread8[model_name] + '\t'
|
||||
else:
|
||||
lines2 += "-\t-\t-\t"
|
||||
if model_name in paddle_cpu_thread8 and paddle_cpu_thread8[
|
||||
model_name] != "":
|
||||
lines2 += paddle_cpu_thread8[model_name] + '\n'
|
||||
else:
|
||||
lines2 += "-\t-\t-\n"
|
||||
f2.writelines(lines2)
|
||||
f2.close()
|
||||
|
||||
f3 = open("struct_gpu_" + domain + ".txt", "w")
|
||||
f3.writelines(
|
||||
"model_name\tort_run\tort_end2end\tgpu_rss_mb\tpaddle_run\tpaddle_end2end\tgpu_rss_mb\ttrt_run\ttrt_end2end\tgpu_rss_mb\ttrt_fp16_run\ttrt_fp16_end2end\tgpu_rss_mb\n"
|
||||
)
|
||||
for model_name in model_name_set:
|
||||
lines1 = model_name + '\t'
|
||||
if model_name in ort_gpu and ort_gpu[model_name] != "":
|
||||
lines1 += ort_gpu[model_name] + '\t'
|
||||
else:
|
||||
lines1 += "-\t-\t-\t"
|
||||
if model_name in paddle_gpu and paddle_gpu[model_name] != "":
|
||||
lines1 += paddle_gpu[model_name] + '\t'
|
||||
else:
|
||||
lines1 += "-\t-\t-\t"
|
||||
if model_name in trt_gpu and trt_gpu[model_name] != "":
|
||||
lines1 += trt_gpu[model_name] + '\t'
|
||||
else:
|
||||
lines1 += "-\t-\t-\t"
|
||||
if model_name in trt_gpu_fp16 and trt_gpu_fp16[model_name] != "":
|
||||
lines1 += trt_gpu_fp16[model_name] + '\n'
|
||||
else:
|
||||
lines1 += "-\t-\t-\n"
|
||||
f3.writelines(lines1)
|
||||
f3.close()
|
6
benchmark/requirements.txt
Normal file
6
benchmark/requirements.txt
Normal file
@@ -0,0 +1,6 @@
|
||||
numpy
|
||||
pynvml
|
||||
psutil
|
||||
GPUtil
|
||||
time
|
||||
numpy
|
33
benchmark/run_benchmark_ppcls.sh
Normal file
33
benchmark/run_benchmark_ppcls.sh
Normal file
@@ -0,0 +1,33 @@
|
||||
echo "[FastDeploy] Running PPcls benchmark..."
|
||||
|
||||
num_of_models=$(ls -d ppcls_model/* | wc -l)
|
||||
|
||||
counter=1
|
||||
for model in $(ls -d ppcls_model/* )
|
||||
do
|
||||
echo "[Benchmark-PPcls] ${counter}/${num_of_models} $model ..."
|
||||
python benchmark_ppcls.py --model $model --image ILSVRC2012_val_00000010.jpeg --cpu_num_thread 1 --iter_num 2000 --backend ort
|
||||
python benchmark_ppcls.py --model $model --image ILSVRC2012_val_00000010.jpeg --cpu_num_thread 8 --iter_num 2000 --backend ort
|
||||
python benchmark_ppcls.py --model $model --image ILSVRC2012_val_00000010.jpeg --cpu_num_thread 1 --iter_num 2000 --backend paddle
|
||||
python benchmark_ppcls.py --model $model --image ILSVRC2012_val_00000010.jpeg --cpu_num_thread 8 --iter_num 2000 --backend paddle
|
||||
python benchmark_ppcls.py --model $model --image ILSVRC2012_val_00000010.jpeg --cpu_num_thread 1 --iter_num 2000 --backend ov
|
||||
python benchmark_ppcls.py --model $model --image ILSVRC2012_val_00000010.jpeg --cpu_num_thread 8 --iter_num 2000 --backend ov
|
||||
python benchmark_ppcls.py --model $model --image ILSVRC2012_val_00000010.jpeg --device gpu --iter_num 2000 --backend ort
|
||||
python benchmark_ppcls.py --model $model --image ILSVRC2012_val_00000010.jpeg --device gpu --iter_num 2000 --backend paddle
|
||||
python benchmark_ppcls.py --model $model --image ILSVRC2012_val_00000010.jpeg --device gpu --iter_num 2000 --backend trt
|
||||
python benchmark_ppcls.py --model $model --image ILSVRC2012_val_00000010.jpeg --device gpu --iter_num 2000 --backend trt --enable_trt_fp16 True
|
||||
counter=$(($counter+1))
|
||||
step=$(( $counter % 1 ))
|
||||
if [ $step = 0 ]
|
||||
then
|
||||
wait
|
||||
fi
|
||||
done
|
||||
|
||||
wait
|
||||
|
||||
rm -rf result_ppcls.txt
|
||||
touch result_ppcls.txt
|
||||
cat ppcls_model/*.txt >> ./result_ppcls.txt
|
||||
|
||||
python convert_info.py --txt_path result_ppcls.txt --domain ppcls
|
33
benchmark/run_benchmark_ppdet.sh
Normal file
33
benchmark/run_benchmark_ppdet.sh
Normal file
@@ -0,0 +1,33 @@
|
||||
echo "[FastDeploy] Running PPdet benchmark..."
|
||||
|
||||
num_of_models=$(ls -d ppdet_model/* | wc -l)
|
||||
|
||||
counter=1
|
||||
for model in $(ls -d ppdet_model/* )
|
||||
do
|
||||
echo "[Benchmark-PPdet] ${counter}/${num_of_models} $model ..."
|
||||
python benchmark_ppdet.py --model $model --image 000000014439.jpg --cpu_num_thread 1 --iter_num 2000 --backend ort
|
||||
python benchmark_ppdet.py --model $model --image 000000014439.jpg --cpu_num_thread 8 --iter_num 2000 --backend ort
|
||||
python benchmark_ppdet.py --model $model --image 000000014439.jpg --cpu_num_thread 1 --iter_num 2000 --backend paddle
|
||||
python benchmark_ppdet.py --model $model --image 000000014439.jpg --cpu_num_thread 8 --iter_num 2000 --backend paddle
|
||||
python benchmark_ppdet.py --model $model --image 000000014439.jpg --cpu_num_thread 1 --iter_num 2000 --backend ov
|
||||
python benchmark_ppdet.py --model $model --image 000000014439.jpg --cpu_num_thread 8 --iter_num 2000 --backend ov
|
||||
python benchmark_ppdet.py --model $model --image 000000014439.jpg --device gpu --iter_num 2000 --backend ort
|
||||
python benchmark_ppdet.py --model $model --image 000000014439.jpg --device gpu --iter_num 2000 --backend paddle
|
||||
python benchmark_ppdet.py --model $model --image 000000014439.jpg --device gpu --iter_num 2000 --backend trt
|
||||
python benchmark_ppdet.py --model $model --image 000000014439.jpg --device gpu --iter_num 2000 --backend trt --enable_trt_fp16 True
|
||||
counter=$(($counter+1))
|
||||
step=$(( $counter % 1 ))
|
||||
if [ $step = 0 ]
|
||||
then
|
||||
wait
|
||||
fi
|
||||
done
|
||||
|
||||
wait
|
||||
|
||||
rm -rf result_ppdet.txt
|
||||
touch result_ppdet.txt
|
||||
cat ppdet_model/*.txt >> ./result_ppdet.txt
|
||||
|
||||
python convert_info.py --txt_path result_ppdet.txt --domain ppdet
|
33
benchmark/run_benchmark_ppseg.sh
Normal file
33
benchmark/run_benchmark_ppseg.sh
Normal file
@@ -0,0 +1,33 @@
|
||||
echo "[FastDeploy] Running PPseg benchmark..."
|
||||
|
||||
num_of_models=$(ls -d ppseg_model/* | wc -l)
|
||||
|
||||
counter=1
|
||||
for model in $(ls -d ppseg_model/* )
|
||||
do
|
||||
echo "[Benchmark-PPseg] ${counter}/${num_of_models} $model ..."
|
||||
python benchmark_ppseg.py --model $model --image ILSVRC2012_val_00000010.jpeg --cpu_num_thread 1 --iter_num 2000 --backend ort
|
||||
python benchmark_ppseg.py --model $model --image ILSVRC2012_val_00000010.jpeg --cpu_num_thread 8 --iter_num 2000 --backend ort
|
||||
python benchmark_ppseg.py --model $model --image ILSVRC2012_val_00000010.jpeg --cpu_num_thread 1 --iter_num 2000 --backend paddle
|
||||
python benchmark_ppseg.py --model $model --image ILSVRC2012_val_00000010.jpeg --cpu_num_thread 8 --iter_num 2000 --backend paddle
|
||||
python benchmark_ppseg.py --model $model --image ILSVRC2012_val_00000010.jpeg --cpu_num_thread 1 --iter_num 2000 --backend ov
|
||||
python benchmark_ppseg.py --model $model --image ILSVRC2012_val_00000010.jpeg --cpu_num_thread 8 --iter_num 2000 --backend ov
|
||||
python benchmark_ppseg.py --model $model --image ILSVRC2012_val_00000010.jpeg --device gpu --iter_num 2000 --backend ort
|
||||
python benchmark_ppseg.py --model $model --image ILSVRC2012_val_00000010.jpeg --device gpu --iter_num 2000 --backend paddle
|
||||
python benchmark_ppseg.py --model $model --image ILSVRC2012_val_00000010.jpeg --device gpu --iter_num 2000 --backend trt
|
||||
python benchmark_ppseg.py --model $model --image ILSVRC2012_val_00000010.jpeg --device gpu --iter_num 2000 --backend trt --enable_trt_fp16 True
|
||||
counter=$(($counter+1))
|
||||
step=$(( $counter % 1 ))
|
||||
if [ $step = 0 ]
|
||||
then
|
||||
wait
|
||||
fi
|
||||
done
|
||||
|
||||
wait
|
||||
|
||||
rm -rf result_ppseg.txt
|
||||
touch result_ppseg.txt
|
||||
cat ppseg_model/*.txt >> ./result_ppseg.txt
|
||||
|
||||
python convert_info.py --txt_path result_ppseg.txt --domain ppseg
|
30
benchmark/run_benchmark_yolo.sh
Normal file
30
benchmark/run_benchmark_yolo.sh
Normal file
@@ -0,0 +1,30 @@
|
||||
echo "[FastDeploy] Running Yolo benchmark..."
|
||||
|
||||
num_of_models=$(ls -d yolo_model/* | wc -l)
|
||||
|
||||
counter=1
|
||||
for model in $(ls -d yolo_model/* )
|
||||
do
|
||||
echo "[Benchmark-Yolo] ${counter}/${num_of_models} $model ..."
|
||||
python benchmark_yolo.py --model $model --image 000000014439.jpg --cpu_num_thread 1 --iter_num 2000 --backend ort
|
||||
python benchmark_yolo.py --model $model --image 000000014439.jpg --cpu_num_thread 8 --iter_num 2000 --backend ort
|
||||
python benchmark_yolo.py --model $model --image 000000014439.jpg --cpu_num_thread 1 --iter_num 2000 --backend ov
|
||||
python benchmark_yolo.py --model $model --image 000000014439.jpg --cpu_num_thread 8 --iter_num 2000 --backend ov
|
||||
python benchmark_yolo.py --model $model --image 000000014439.jpg --device gpu --iter_num 2000 --backend ort
|
||||
python benchmark_yolo.py --model $model --image 000000014439.jpg --device gpu --iter_num 2000 --backend trt
|
||||
python benchmark_yolo.py --model $model --image 000000014439.jpg --device gpu --iter_num 2000 --backend trt --enable_trt_fp16 True
|
||||
counter=$(($counter+1))
|
||||
step=$(( $counter % 1 ))
|
||||
if [ $step = 0 ]
|
||||
then
|
||||
wait
|
||||
fi
|
||||
done
|
||||
|
||||
wait
|
||||
|
||||
rm -rf result_yolo.txt
|
||||
touch result_yolo.txt
|
||||
cat yolo_model/*.txt >> ./result_yolo.txt
|
||||
|
||||
python convert_info.py --txt_path result_yolo.txt --domain yolo
|
@@ -1,178 +0,0 @@
|
||||
import fastdeploy as fd
|
||||
import cv2
|
||||
import os
|
||||
from tqdm import trange
|
||||
import numpy as np
|
||||
import datetime
|
||||
import json
|
||||
|
||||
|
||||
def parse_arguments():
|
||||
import argparse
|
||||
import ast
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument(
|
||||
"--model", required=True, help="Path of PaddleClas model.")
|
||||
parser.add_argument(
|
||||
"--image", type=str, required=False, help="Path of test image file.")
|
||||
parser.add_argument(
|
||||
"--input_name",
|
||||
type=str,
|
||||
required=False,
|
||||
default="inputs",
|
||||
help="input name of inference file.")
|
||||
parser.add_argument(
|
||||
"--topk", type=int, default=1, help="Return topk results.")
|
||||
parser.add_argument(
|
||||
"--cpu_num_thread",
|
||||
type=int,
|
||||
default=12,
|
||||
help="default number of cpu thread.")
|
||||
parser.add_argument(
|
||||
"--size",
|
||||
nargs='+',
|
||||
type=int,
|
||||
default=[1, 3, 224, 224],
|
||||
help="size of inference array.")
|
||||
parser.add_argument(
|
||||
"--iter_num",
|
||||
required=True,
|
||||
type=int,
|
||||
default=30,
|
||||
help="number of iterations for computing performace.")
|
||||
parser.add_argument(
|
||||
"--device",
|
||||
nargs='+',
|
||||
type=str,
|
||||
default=['cpu', 'cpu', 'cpu', 'gpu', 'gpu', 'gpu'],
|
||||
help="Type of inference device, support 'cpu' or 'gpu'.")
|
||||
parser.add_argument(
|
||||
"--backend",
|
||||
nargs='+',
|
||||
type=str,
|
||||
default=['ort', 'paddle', 'ov', 'ort', 'trt', 'paddle'],
|
||||
help="inference backend.")
|
||||
args = parser.parse_args()
|
||||
backend_list = ['ov', 'trt', 'ort', 'paddle']
|
||||
device_list = ['cpu', 'gpu']
|
||||
assert len(args.device) == len(
|
||||
args.backend), "the same number of --device and --backend is requested"
|
||||
assert args.iter_num > 10, "--iter_num has to bigger than 10"
|
||||
assert len(args.size
|
||||
) == 4, "size should include 4 values, e.g., --size 1 3 300 300"
|
||||
for b in args.backend:
|
||||
assert b in backend_list, "%s backend is not supported" % b
|
||||
for d in args.device:
|
||||
assert d in device_list, "%s device is not supported" % d
|
||||
return args
|
||||
|
||||
|
||||
def build_option(index, args):
|
||||
option = fd.RuntimeOption()
|
||||
device = args.device[index]
|
||||
backend = args.backend[index]
|
||||
option.set_cpu_thread_num(args.cpu_num_thread)
|
||||
if device == "gpu":
|
||||
option.use_gpu()
|
||||
|
||||
if backend == "trt":
|
||||
assert device == "gpu", "the trt backend need device==gpu"
|
||||
option.use_trt_backend()
|
||||
option.set_trt_input_shape(args.input_name, args.size)
|
||||
elif backend == "ov":
|
||||
assert device == "cpu", "the openvino backend need device==cpu"
|
||||
option.use_openvino_backend()
|
||||
|
||||
elif backend == "paddle":
|
||||
option.use_paddle_backend()
|
||||
|
||||
elif backend == "ort":
|
||||
option.use_ort_backend()
|
||||
|
||||
else:
|
||||
print("%s is an unsupported backend" % backend)
|
||||
|
||||
print("============= inference using %s backend on %s device ============="
|
||||
% (args.backend[index], args.device[index]))
|
||||
return option
|
||||
|
||||
|
||||
args = parse_arguments()
|
||||
|
||||
save_dict = dict()
|
||||
|
||||
for index, device_name in enumerate(args.device):
|
||||
if device_name not in save_dict:
|
||||
save_dict[device_name] = dict()
|
||||
|
||||
# 配置runtime,加载模型
|
||||
runtime_option = build_option(index, args)
|
||||
|
||||
model_file = os.path.join(args.model, "inference.pdmodel")
|
||||
params_file = os.path.join(args.model, "inference.pdiparams")
|
||||
config_file = os.path.join(args.model, "inference_cls.yaml")
|
||||
model = fd.vision.classification.PaddleClasModel(
|
||||
model_file, params_file, config_file, runtime_option=runtime_option)
|
||||
|
||||
# 创建要输入的向量
|
||||
channel = args.size[1]
|
||||
height = args.size[2]
|
||||
width = args.size[3]
|
||||
input_array = np.random.randint(
|
||||
0, high=255, size=(height, width, channel), dtype=np.uint8)
|
||||
|
||||
# 如果有输入图片,则使用输入的图片进行推理
|
||||
if args.image:
|
||||
input_array = cv2.imread(args.image)
|
||||
model_name = args.model.split('/')
|
||||
model_name = model_name[-1] if model_name[-1] else model_name[-2]
|
||||
print(" Model: ", model_name, " Input shape: ", input_array.shape)
|
||||
start_time = datetime.datetime.now()
|
||||
model.enable_record_time_of_runtime()
|
||||
warmup_iter = args.iter_num // 5
|
||||
warmup_end2end_time = 0
|
||||
if "iter_num" not in save_dict:
|
||||
save_dict["iter_num"] = args.iter_num
|
||||
if "warmup_iter" not in save_dict:
|
||||
save_dict["warmup_iter"] = warmup_iter
|
||||
if "cpu_num_thread" not in save_dict:
|
||||
save_dict["cpu_num_thread"] = args.cpu_num_thread
|
||||
for i in trange(args.iter_num, desc="Inference Progress"):
|
||||
if i == warmup_iter:
|
||||
# 计算warmup端到端总时间(s)
|
||||
warmup_time = datetime.datetime.now()
|
||||
warmup_end2end_time = warmup_time - start_time
|
||||
warmup_end2end_time = (
|
||||
warmup_end2end_time.days * 24 * 60 * 60 +
|
||||
warmup_end2end_time.seconds
|
||||
) * 1000 + warmup_end2end_time.microseconds / 1000
|
||||
result = model.predict(input_array, args.topk)
|
||||
end_time = datetime.datetime.now()
|
||||
# 计算端到端(前处理,推理,后处理)的总时间
|
||||
statis_info_of_runtime_dict = model.print_statis_info_of_runtime()
|
||||
end2end_time = end_time - start_time
|
||||
end2end_time = (end2end_time.days * 24 * 60 * 60 + end2end_time.seconds
|
||||
) * 1000 + end2end_time.microseconds / 1000
|
||||
remain_end2end_time = end2end_time - warmup_end2end_time
|
||||
pre_post_process = end2end_time - statis_info_of_runtime_dict[
|
||||
"total_time"] * 1000
|
||||
end2end = remain_end2end_time / (args.iter_num - warmup_iter)
|
||||
runtime = statis_info_of_runtime_dict["avg_time"] * 1000
|
||||
print("Total time of end2end: %s ms" % str(end2end_time))
|
||||
print("Average time of end2end exclude warmup step: %s ms" % str(end2end))
|
||||
print("Total time of preprocess and postprocess in warmup step: %s ms" %
|
||||
str(warmup_end2end_time - statis_info_of_runtime_dict["warmup_time"]
|
||||
* 1000))
|
||||
print(
|
||||
"Average time of preprocess and postprocess exclude warmup step: %s ms"
|
||||
% str((remain_end2end_time - statis_info_of_runtime_dict["remain_time"]
|
||||
* 1000) / (args.iter_num - warmup_iter)))
|
||||
# 结构化输出
|
||||
backend_name = args.backend[index]
|
||||
save_dict[device_name][backend_name] = {
|
||||
"end2end": end2end,
|
||||
"runtime": runtime
|
||||
}
|
||||
json_str = json.dumps(save_dict)
|
||||
with open("%s.json" % model_name, 'w', encoding='utf-8') as fw:
|
||||
json.dump(json_str, fw, indent=4, ensure_ascii=False)
|
@@ -59,8 +59,8 @@ YOLOv5::YOLOv5(const std::string& model_file, const std::string& params_file,
|
||||
const RuntimeOption& custom_option,
|
||||
const Frontend& model_format) {
|
||||
if (model_format == Frontend::ONNX) {
|
||||
valid_cpu_backends = {Backend::ORT}; // 指定可用的CPU后端
|
||||
valid_gpu_backends = {Backend::ORT, Backend::TRT}; // 指定可用的GPU后端
|
||||
valid_cpu_backends = {Backend::OPENVINO, Backend::ORT};
|
||||
valid_gpu_backends = {Backend::ORT, Backend::TRT};
|
||||
} else {
|
||||
valid_cpu_backends = {Backend::PDINFER, Backend::ORT};
|
||||
valid_gpu_backends = {Backend::PDINFER, Backend::ORT, Backend::TRT};
|
||||
|
@@ -63,8 +63,8 @@ YOLOv6::YOLOv6(const std::string& model_file, const std::string& params_file,
|
||||
const RuntimeOption& custom_option,
|
||||
const Frontend& model_format) {
|
||||
if (model_format == Frontend::ONNX) {
|
||||
valid_cpu_backends = {Backend::ORT}; // 指定可用的CPU后端
|
||||
valid_gpu_backends = {Backend::ORT, Backend::TRT}; // 指定可用的GPU后端
|
||||
valid_cpu_backends = {Backend::OPENVINO, Backend::ORT};
|
||||
valid_gpu_backends = {Backend::ORT, Backend::TRT};
|
||||
} else {
|
||||
valid_cpu_backends = {Backend::PDINFER, Backend::ORT};
|
||||
valid_gpu_backends = {Backend::PDINFER, Backend::ORT, Backend::TRT};
|
||||
|
@@ -61,8 +61,8 @@ YOLOv7::YOLOv7(const std::string& model_file, const std::string& params_file,
|
||||
const RuntimeOption& custom_option,
|
||||
const Frontend& model_format) {
|
||||
if (model_format == Frontend::ONNX) {
|
||||
valid_cpu_backends = {Backend::ORT}; // 指定可用的CPU后端
|
||||
valid_gpu_backends = {Backend::ORT, Backend::TRT}; // 指定可用的GPU后端
|
||||
valid_cpu_backends = {Backend::OPENVINO, Backend::ORT};
|
||||
valid_gpu_backends = {Backend::ORT, Backend::TRT};
|
||||
} else {
|
||||
valid_cpu_backends = {Backend::PDINFER};
|
||||
valid_gpu_backends = {Backend::PDINFER};
|
||||
|
@@ -75,8 +75,8 @@ void LetterBoxWithRightBottomPad(Mat* mat, std::vector<int> size,
|
||||
YOLOX::YOLOX(const std::string& model_file, const std::string& params_file,
|
||||
const RuntimeOption& custom_option, const Frontend& model_format) {
|
||||
if (model_format == Frontend::ONNX) {
|
||||
valid_cpu_backends = {Backend::ORT}; // 指定可用的CPU后端
|
||||
valid_gpu_backends = {Backend::ORT, Backend::TRT}; // 指定可用的GPU后端
|
||||
valid_cpu_backends = {Backend::OPENVINO, Backend::ORT};
|
||||
valid_gpu_backends = {Backend::ORT, Backend::TRT};
|
||||
} else {
|
||||
valid_cpu_backends = {Backend::PDINFER, Backend::ORT};
|
||||
valid_gpu_backends = {Backend::PDINFER, Backend::ORT, Backend::TRT};
|
||||
|
@@ -24,7 +24,7 @@ PicoDet::PicoDet(const std::string& model_file, const std::string& params_file,
|
||||
const RuntimeOption& custom_option,
|
||||
const Frontend& model_format) {
|
||||
config_file_ = config_file;
|
||||
valid_cpu_backends = {Backend::ORT, Backend::PDINFER};
|
||||
valid_cpu_backends = {Backend::PDINFER, Backend::ORT};
|
||||
valid_gpu_backends = {Backend::ORT, Backend::PDINFER, Backend::TRT};
|
||||
runtime_option = custom_option;
|
||||
runtime_option.model_format = model_format;
|
||||
|
@@ -23,7 +23,7 @@ PPYOLO::PPYOLO(const std::string& model_file, const std::string& params_file,
|
||||
const RuntimeOption& custom_option,
|
||||
const Frontend& model_format) {
|
||||
config_file_ = config_file;
|
||||
valid_cpu_backends = {Backend::PDINFER};
|
||||
valid_cpu_backends = {Backend::OPENVINO, Backend::PDINFER};
|
||||
valid_gpu_backends = {Backend::PDINFER};
|
||||
has_nms_ = true;
|
||||
runtime_option = custom_option;
|
||||
|
@@ -23,7 +23,7 @@ YOLOv3::YOLOv3(const std::string& model_file, const std::string& params_file,
|
||||
const RuntimeOption& custom_option,
|
||||
const Frontend& model_format) {
|
||||
config_file_ = config_file;
|
||||
valid_cpu_backends = {Backend::ORT, Backend::PDINFER};
|
||||
valid_cpu_backends = {Backend::OPENVINO, Backend::ORT, Backend::PDINFER};
|
||||
valid_gpu_backends = {Backend::ORT, Backend::PDINFER, Backend::TRT};
|
||||
runtime_option = custom_option;
|
||||
runtime_option.model_format = model_format;
|
||||
|
@@ -13,7 +13,7 @@ PaddleSegModel::PaddleSegModel(const std::string& model_file,
|
||||
const RuntimeOption& custom_option,
|
||||
const Frontend& model_format) {
|
||||
config_file_ = config_file;
|
||||
valid_cpu_backends = {Backend::PDINFER};
|
||||
valid_cpu_backends = {Backend::OPENVINO, Backend::PDINFER};
|
||||
valid_gpu_backends = {Backend::PDINFER, Backend::TRT};
|
||||
runtime_option = custom_option;
|
||||
runtime_option.model_format = model_format;
|
||||
|
Reference in New Issue
Block a user