mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-04 08:16:42 +08:00
[Sync] Update to latest code (#2679)
* [Sync] Update to latest code * Add new code files * Add new code files * update code * Try to fix build.sh * Try to fix build.sh * Update code * Update requirements.txt * Update code --------- Co-authored-by: Jiang-Jia-Jun <jiangjiajun@baidu.com>
This commit is contained in:
@@ -14,10 +14,15 @@
|
||||
# limitations under the License.
|
||||
"""
|
||||
|
||||
from typing import Dict
|
||||
|
||||
import numpy as np
|
||||
import paddle
|
||||
from paddle import nn
|
||||
from paddle.distributed import fleet
|
||||
|
||||
from fastdeploy.config import FDConfig
|
||||
|
||||
from .utils import get_tensor
|
||||
|
||||
|
||||
@@ -28,12 +33,12 @@ class VocabParallelEmbedding(nn.Layer):
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
fd_config,
|
||||
num_embeddings,
|
||||
embedding_dim=768,
|
||||
params_dtype="bfloat16",
|
||||
fd_config: FDConfig,
|
||||
num_embeddings: int,
|
||||
embedding_dim: int = 768,
|
||||
params_dtype: str = "bfloat16",
|
||||
prefix="",
|
||||
):
|
||||
) -> None:
|
||||
"""
|
||||
Initialize the VocabParallelEmbedding layer for the model.
|
||||
|
||||
@@ -41,28 +46,28 @@ class VocabParallelEmbedding(nn.Layer):
|
||||
fd_config (FDConfig): Arguments related to inference, containing
|
||||
attributes such as weight_dtype, act_dtype, mp_size, hidden_size, head_dim,
|
||||
num_attention_heads, and ffn_hidden_size.
|
||||
num_embeddings : vocabulary size.
|
||||
embedding_dim : size of hidden state.
|
||||
params_dtype : data type of parameters.
|
||||
prefix (str): Unique name of the layer, used for naming internal attributes,
|
||||
you can give it any name you like.
|
||||
num_embeddings (int) : vocabulary size.
|
||||
embedding_dim (int) : size of hidden state.
|
||||
params_dtype (str) : data type of parameters.
|
||||
prefix (str): The name of current layer. Defaults to "".
|
||||
"""
|
||||
super().__init__()
|
||||
self.fd_config = fd_config
|
||||
hcg = fleet.get_hybrid_communicate_group()
|
||||
self.mp_rank = hcg.get_model_parallel_rank()
|
||||
self.column_cut = fd_config.parallel_config.column_cut
|
||||
self.world_size = hcg.get_model_parallel_world_size()
|
||||
self.ring_id = hcg.get_model_parallel_group().id
|
||||
self.use_rope = fd_config.model_config.use_rope
|
||||
self.rope_head_dim = fd_config.model_config.rope_head_dim
|
||||
self.use_ep = fd_config.parallel_config.use_ep
|
||||
self.hidden_dropout_prob = fd_config.model_config.hidden_dropout_prob
|
||||
self.initializer_range = fd_config.model_config.initializer_range
|
||||
self.sequence_parallel = fd_config.parallel_config.sequence_parallel
|
||||
self.max_position_embeddings = fd_config.model_config.max_position_embeddings
|
||||
self.freeze_embedding = fd_config.model_config.freeze_embedding
|
||||
self.tie_word_embeddings = fd_config.model_config.tie_word_embeddings
|
||||
self.mp_rank: int = hcg.get_model_parallel_rank()
|
||||
self.column_cut = False
|
||||
self.world_size: int = hcg.get_model_parallel_world_size()
|
||||
self.ring_id: int = hcg.get_model_parallel_group().id
|
||||
self.use_rope: bool = fd_config.model_config.use_rope
|
||||
self.rope_head_dim: int = fd_config.model_config.rope_head_dim
|
||||
self.use_ep: bool = fd_config.parallel_config.use_ep
|
||||
self.hidden_dropout_prob: float = fd_config.model_config.hidden_dropout_prob
|
||||
self.initializer_range: float = fd_config.model_config.initializer_range
|
||||
self.sequence_parallel: bool = fd_config.parallel_config.sequence_parallel
|
||||
self.max_position_embeddings: int = fd_config.model_config.max_position_embeddings
|
||||
self.freeze_embedding: bool = fd_config.model_config.freeze_embedding
|
||||
self.tie_word_embeddings: bool = fd_config.model_config.tie_word_embeddings
|
||||
self.params_dtype: str = params_dtype
|
||||
|
||||
if self.use_ep:
|
||||
self.word_embeddings = nn.Embedding(
|
||||
@@ -109,7 +114,8 @@ class VocabParallelEmbedding(nn.Layer):
|
||||
self.rope_head_dim_shape_tensor = paddle.ones((self.rope_head_dim),
|
||||
dtype="int8")
|
||||
|
||||
def load_state_dict(self, state_dict):
|
||||
def load_state_dict(self, state_dict: Dict[str,
|
||||
paddle.Tensor | np.ndarray]):
|
||||
"""
|
||||
Load the checkpoint state dictionary into the layer.
|
||||
|
||||
@@ -125,7 +131,7 @@ class VocabParallelEmbedding(nn.Layer):
|
||||
get_tensor(state_dict.pop(self.prefix + ".weight")).astype(
|
||||
paddle.get_default_dtype()))
|
||||
|
||||
def forward(self, ids_remove_padding=None):
|
||||
def forward(self, ids_remove_padding=None) -> paddle.Tensor:
|
||||
"""
|
||||
Defines the forward computation of the layer.
|
||||
|
||||
|
Reference in New Issue
Block a user