[Docs] add qwen25-vl docs (#5243)

* [Docs] add qwen25-vl docs

* [Docs] add qwen25-vl docs

* [Docs] add qwen25-vl docs
This commit is contained in:
CSWYF3634076
2025-11-27 15:05:57 +08:00
committed by GitHub
parent 5a67a6d960
commit 051b82b4c8
3 changed files with 268 additions and 0 deletions

View File

@@ -0,0 +1,136 @@
[简体中文](../zh/get_started/quick_start_qwen25_vl.md)
# Deploy Qwen2.5-VL in 10 Minutes
Before deployment, ensure your environment meets the following requirements:
- GPU Driver ≥ 535
- CUDA ≥ 12.3
- cuDNN ≥ 9.5
- Linux X86_64
- Python ≥ 3.10
This guide uses the lightweight Qwen2.5-VL model for demonstration, which can be deployed on most hardware configurations. Docker deployment is recommended.
For more information about how to install FastDeploy, refer to the [installation document](installation/README.md).
## 1. Launch Service
Please download the qwen25-vl model in advance: such as [Qwen2.5-VL-7B-Instruct](https://huggingface.co/Qwen/Qwen2.5-VL-7B-Instruct)
Add the following configuration in `config.json`
```text
"rope_3d": true,
"freq_allocation": 16
```
After installing FastDeploy, execute the following command in the terminal to start the service. For the configuration method of the startup command, refer to [Parameter Description](../parameters.md)
```
export ENABLE_V1_KVCACHE_SCHEDULER=1
python -m fastdeploy.entrypoints.openai.api_server \
--model You/Path/Qwen2.5-VL-7B-Instruct \
--port 8180 \
--metrics-port 8181 \
--engine-worker-queue-port 8182 \
--max-model-len 32768 \
--max-num-seqs 32
```
> 💡 Note: In the path specified by ```--model```, if the subdirectory corresponding to the path does not exist in the current directory, it will try to query whether AIStudio has a preset model based on the specified model name (such as ```Qwen/Qwen2.5-VL-7B-Instruct```). If it exists, it will automatically start downloading. The default download path is: ```~/xx```. For instructions and configuration on automatic model download, see [Model Download](../supported_models.md).
```--max-model-len``` indicates the maximum number of tokens supported by the currently deployed service.
```--max-num-seqs``` indicates the maximum number of concurrent processing supported by the currently deployed service.
**Related Documents**
- [Service Deployment](../online_serving/README.md)
- [Service Monitoring](../online_serving/metrics.md)
## 2. Request the Service
After starting the service, the following output indicates successful initialization:
```shell
api_server.py[line:91] Launching metrics service at http://0.0.0.0:8181/metrics
api_server.py[line:94] Launching chat completion service at http://0.0.0.0:8180/v1/chat/completions
api_server.py[line:97] Launching completion service at http://0.0.0.0:8180/v1/completions
INFO: Started server process [13909]
INFO: Waiting for application startup.
INFO: Application startup complete.
INFO: Uvicorn running on http://0.0.0.0:8180 (Press CTRL+C to quit)
```
### Health Check
Verify service status (HTTP 200 indicates success):
```shell
curl -i http://0.0.0.0:8180/health
```
### cURL Request
Send requests as follows:
```shell
curl -X POST "http://0.0.0.0:8180/v1/chat/completions" \
-H "Content-Type: application/json" \
-d '{
"messages": [
{"role": "user", "content": "Rewrite Li Bai's 'Quiet Night Thoughts' as a modern poem"}
]
}'
```
For image inputs:
```shell
curl -X POST "http://0.0.0.0:8180/v1/chat/completions" \
-H "Content-Type: application/json" \
-d '{
"messages": [
{"role": "user", "content": [
{"type":"image_url", "image_url": {"url":"https://paddlenlp.bj.bcebos.com/datasets/paddlemix/demo_images/example2.jpg"}},
{"type":"text", "text":"From which era does the artifact in the image originate?"}
]}
]
}'
```
For video inputs:
```shell
curl -X POST "http://0.0.0.0:8180/v1/chat/completions" \
-H "Content-Type: application/json" \
-d '{
"messages": [
{"role": "user", "content": [
{"type":"video_url", "video_url": {"url":"https://bj.bcebos.com/v1/paddlenlp/datasets/paddlemix/demo_video/example_video.mp4"}},
{"type":"text", "text":"How many apples are in the scene?"}
]}
]
}'
```
### Python Client (OpenAI-compatible API)
FastDeploy's API is OpenAI-compatible. You can also use Python for streaming requests:
```python
import openai
host = "0.0.0.0"
port = "8180"
client = openai.Client(base_url=f"http://{host}:{port}/v1", api_key="null")
response = client.chat.completions.create(
model="null",
messages=[
{"role": "user", "content": [
{"type": "image_url", "image_url": {"url": "https://paddlenlp.bj.bcebos.com/datasets/paddlemix/demo_images/example2.jpg"}},
{"type": "text", "text": "From which era does the artifact in the image originate?"},
]},
],
stream=True,
)
for chunk in response:
if chunk.choices[0].delta:
print(chunk.choices[0].delta.content, end='')
print('\n')
```