mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-12-24 13:28:13 +08:00
[Docs] add qwen25-vl docs (#5243)
* [Docs] add qwen25-vl docs * [Docs] add qwen25-vl docs * [Docs] add qwen25-vl docs
This commit is contained in:
136
docs/get_started/quick_start_qwen25_vl.md
Normal file
136
docs/get_started/quick_start_qwen25_vl.md
Normal file
@@ -0,0 +1,136 @@
|
||||
[简体中文](../zh/get_started/quick_start_qwen25_vl.md)
|
||||
|
||||
# Deploy Qwen2.5-VL in 10 Minutes
|
||||
|
||||
Before deployment, ensure your environment meets the following requirements:
|
||||
|
||||
- GPU Driver ≥ 535
|
||||
- CUDA ≥ 12.3
|
||||
- cuDNN ≥ 9.5
|
||||
- Linux X86_64
|
||||
- Python ≥ 3.10
|
||||
|
||||
This guide uses the lightweight Qwen2.5-VL model for demonstration, which can be deployed on most hardware configurations. Docker deployment is recommended.
|
||||
|
||||
For more information about how to install FastDeploy, refer to the [installation document](installation/README.md).
|
||||
|
||||
## 1. Launch Service
|
||||
|
||||
Please download the qwen25-vl model in advance: such as [Qwen2.5-VL-7B-Instruct](https://huggingface.co/Qwen/Qwen2.5-VL-7B-Instruct)
|
||||
|
||||
Add the following configuration in `config.json`
|
||||
```text
|
||||
"rope_3d": true,
|
||||
"freq_allocation": 16
|
||||
```
|
||||
|
||||
After installing FastDeploy, execute the following command in the terminal to start the service. For the configuration method of the startup command, refer to [Parameter Description](../parameters.md)
|
||||
|
||||
```
|
||||
export ENABLE_V1_KVCACHE_SCHEDULER=1
|
||||
python -m fastdeploy.entrypoints.openai.api_server \
|
||||
--model You/Path/Qwen2.5-VL-7B-Instruct \
|
||||
--port 8180 \
|
||||
--metrics-port 8181 \
|
||||
--engine-worker-queue-port 8182 \
|
||||
--max-model-len 32768 \
|
||||
--max-num-seqs 32
|
||||
```
|
||||
|
||||
> 💡 Note: In the path specified by ```--model```, if the subdirectory corresponding to the path does not exist in the current directory, it will try to query whether AIStudio has a preset model based on the specified model name (such as ```Qwen/Qwen2.5-VL-7B-Instruct```). If it exists, it will automatically start downloading. The default download path is: ```~/xx```. For instructions and configuration on automatic model download, see [Model Download](../supported_models.md).
|
||||
```--max-model-len``` indicates the maximum number of tokens supported by the currently deployed service.
|
||||
```--max-num-seqs``` indicates the maximum number of concurrent processing supported by the currently deployed service.
|
||||
|
||||
**Related Documents**
|
||||
- [Service Deployment](../online_serving/README.md)
|
||||
- [Service Monitoring](../online_serving/metrics.md)
|
||||
|
||||
## 2. Request the Service
|
||||
After starting the service, the following output indicates successful initialization:
|
||||
|
||||
```shell
|
||||
api_server.py[line:91] Launching metrics service at http://0.0.0.0:8181/metrics
|
||||
api_server.py[line:94] Launching chat completion service at http://0.0.0.0:8180/v1/chat/completions
|
||||
api_server.py[line:97] Launching completion service at http://0.0.0.0:8180/v1/completions
|
||||
INFO: Started server process [13909]
|
||||
INFO: Waiting for application startup.
|
||||
INFO: Application startup complete.
|
||||
INFO: Uvicorn running on http://0.0.0.0:8180 (Press CTRL+C to quit)
|
||||
```
|
||||
|
||||
### Health Check
|
||||
|
||||
Verify service status (HTTP 200 indicates success):
|
||||
|
||||
```shell
|
||||
curl -i http://0.0.0.0:8180/health
|
||||
```
|
||||
|
||||
### cURL Request
|
||||
Send requests as follows:
|
||||
|
||||
```shell
|
||||
curl -X POST "http://0.0.0.0:8180/v1/chat/completions" \
|
||||
-H "Content-Type: application/json" \
|
||||
-d '{
|
||||
"messages": [
|
||||
{"role": "user", "content": "Rewrite Li Bai's 'Quiet Night Thoughts' as a modern poem"}
|
||||
]
|
||||
}'
|
||||
```
|
||||
|
||||
For image inputs:
|
||||
|
||||
```shell
|
||||
curl -X POST "http://0.0.0.0:8180/v1/chat/completions" \
|
||||
-H "Content-Type: application/json" \
|
||||
-d '{
|
||||
"messages": [
|
||||
{"role": "user", "content": [
|
||||
{"type":"image_url", "image_url": {"url":"https://paddlenlp.bj.bcebos.com/datasets/paddlemix/demo_images/example2.jpg"}},
|
||||
{"type":"text", "text":"From which era does the artifact in the image originate?"}
|
||||
]}
|
||||
]
|
||||
}'
|
||||
```
|
||||
|
||||
For video inputs:
|
||||
|
||||
```shell
|
||||
curl -X POST "http://0.0.0.0:8180/v1/chat/completions" \
|
||||
-H "Content-Type: application/json" \
|
||||
-d '{
|
||||
"messages": [
|
||||
{"role": "user", "content": [
|
||||
{"type":"video_url", "video_url": {"url":"https://bj.bcebos.com/v1/paddlenlp/datasets/paddlemix/demo_video/example_video.mp4"}},
|
||||
{"type":"text", "text":"How many apples are in the scene?"}
|
||||
]}
|
||||
]
|
||||
}'
|
||||
```
|
||||
|
||||
### Python Client (OpenAI-compatible API)
|
||||
|
||||
FastDeploy's API is OpenAI-compatible. You can also use Python for streaming requests:
|
||||
|
||||
```python
|
||||
import openai
|
||||
host = "0.0.0.0"
|
||||
port = "8180"
|
||||
client = openai.Client(base_url=f"http://{host}:{port}/v1", api_key="null")
|
||||
|
||||
response = client.chat.completions.create(
|
||||
model="null",
|
||||
messages=[
|
||||
{"role": "user", "content": [
|
||||
{"type": "image_url", "image_url": {"url": "https://paddlenlp.bj.bcebos.com/datasets/paddlemix/demo_images/example2.jpg"}},
|
||||
{"type": "text", "text": "From which era does the artifact in the image originate?"},
|
||||
]},
|
||||
],
|
||||
stream=True,
|
||||
)
|
||||
for chunk in response:
|
||||
if chunk.choices[0].delta:
|
||||
print(chunk.choices[0].delta.content, end='')
|
||||
print('\n')
|
||||
```
|
||||
Reference in New Issue
Block a user