mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-05 16:48:03 +08:00
[CVCUDA] PP-OCR Cls & Rec preprocessor support CV-CUDA (#1470)
* ppocr cls preprocessor use manager * hwc2chw cvcuda * ppocr rec preproc use manager * ocr rec preproc cvcuda * fix rec preproc bug * ppocr cls&rec preproc set normalize * fix pybind * address comment
This commit is contained in:
@@ -52,10 +52,7 @@ class DBDetectorPreprocessor:
|
||||
value, int), "The value to set `max_side_len` must be type of int."
|
||||
self._preprocessor.max_side_len = value
|
||||
|
||||
def set_normalize(self,
|
||||
mean=[0.485, 0.456, 0.406],
|
||||
std=[0.229, 0.224, 0.225],
|
||||
is_scale=True):
|
||||
def set_normalize(self, mean, std, is_scale):
|
||||
"""Set preprocess normalize parameters, please call this API to
|
||||
customize the normalize parameters, otherwise it will use the default
|
||||
normalize parameters.
|
||||
@@ -340,35 +337,15 @@ class ClassifierPreprocessor:
|
||||
"""
|
||||
return self._preprocessor.run(input_ims)
|
||||
|
||||
@property
|
||||
def is_scale(self):
|
||||
return self._preprocessor.is_scale
|
||||
|
||||
@is_scale.setter
|
||||
def is_scale(self, value):
|
||||
assert isinstance(
|
||||
value, bool), "The value to set `is_scale` must be type of bool."
|
||||
self._preprocessor.is_scale = value
|
||||
|
||||
@property
|
||||
def scale(self):
|
||||
return self._preprocessor.scale
|
||||
|
||||
@scale.setter
|
||||
def scale(self, value):
|
||||
assert isinstance(
|
||||
value, list), "The value to set `scale` must be type of list."
|
||||
self._preprocessor.scale = value
|
||||
|
||||
@property
|
||||
def mean(self):
|
||||
return self._preprocessor.mean
|
||||
|
||||
@mean.setter
|
||||
def mean(self, value):
|
||||
assert isinstance(
|
||||
value, list), "The value to set `mean` must be type of list."
|
||||
self._preprocessor.mean = value
|
||||
def set_normalize(self, mean, std, is_scale):
|
||||
"""Set preprocess normalize parameters, please call this API to
|
||||
customize the normalize parameters, otherwise it will use the default
|
||||
normalize parameters.
|
||||
:param: mean: (list of float) mean values
|
||||
:param: std: (list of float) std values
|
||||
:param: is_scale: (boolean) whether to scale
|
||||
"""
|
||||
self._preprocessor.set_normalize(mean, std, is_scale)
|
||||
|
||||
@property
|
||||
def cls_image_shape(self):
|
||||
@@ -496,37 +473,6 @@ class Classifier(FastDeployModel):
|
||||
def postprocessor(self, value):
|
||||
self._model.postprocessor = value
|
||||
|
||||
# Cls Preprocessor Property
|
||||
@property
|
||||
def is_scale(self):
|
||||
return self._model.preprocessor.is_scale
|
||||
|
||||
@is_scale.setter
|
||||
def is_scale(self, value):
|
||||
assert isinstance(
|
||||
value, bool), "The value to set `is_scale` must be type of bool."
|
||||
self._model.preprocessor.is_scale = value
|
||||
|
||||
@property
|
||||
def scale(self):
|
||||
return self._model.preprocessor.scale
|
||||
|
||||
@scale.setter
|
||||
def scale(self, value):
|
||||
assert isinstance(
|
||||
value, list), "The value to set `scale` must be type of list."
|
||||
self._model.preprocessor.scale = value
|
||||
|
||||
@property
|
||||
def mean(self):
|
||||
return self._model.preprocessor.mean
|
||||
|
||||
@mean.setter
|
||||
def mean(self, value):
|
||||
assert isinstance(
|
||||
value, list), "The value to set `mean` must be type of list."
|
||||
self._model.preprocessor.mean = value
|
||||
|
||||
@property
|
||||
def cls_image_shape(self):
|
||||
return self._model.preprocessor.cls_image_shape
|
||||
@@ -575,35 +521,15 @@ class RecognizerPreprocessor:
|
||||
bool), "The value to set `static_shape_infer` must be type of bool."
|
||||
self._preprocessor.static_shape_infer = value
|
||||
|
||||
@property
|
||||
def is_scale(self):
|
||||
return self._preprocessor.is_scale
|
||||
|
||||
@is_scale.setter
|
||||
def is_scale(self, value):
|
||||
assert isinstance(
|
||||
value, bool), "The value to set `is_scale` must be type of bool."
|
||||
self._preprocessor.is_scale = value
|
||||
|
||||
@property
|
||||
def scale(self):
|
||||
return self._preprocessor.scale
|
||||
|
||||
@scale.setter
|
||||
def scale(self, value):
|
||||
assert isinstance(
|
||||
value, list), "The value to set `scale` must be type of list."
|
||||
self._preprocessor.scale = value
|
||||
|
||||
@property
|
||||
def mean(self):
|
||||
return self._preprocessor.mean
|
||||
|
||||
@mean.setter
|
||||
def mean(self, value):
|
||||
assert isinstance(
|
||||
value, list), "The value to set `mean` must be type of list."
|
||||
self._preprocessor.mean = value
|
||||
def set_normalize(self, mean, std, is_scale):
|
||||
"""Set preprocess normalize parameters, please call this API to
|
||||
customize the normalize parameters, otherwise it will use the default
|
||||
normalize parameters.
|
||||
:param: mean: (list of float) mean values
|
||||
:param: std: (list of float) std values
|
||||
:param: is_scale: (boolean) whether to scale
|
||||
"""
|
||||
self._preprocessor.set_normalize(mean, std, is_scale)
|
||||
|
||||
@property
|
||||
def rec_image_shape(self):
|
||||
@@ -728,36 +654,6 @@ class Recognizer(FastDeployModel):
|
||||
bool), "The value to set `static_shape_infer` must be type of bool."
|
||||
self._model.preprocessor.static_shape_infer = value
|
||||
|
||||
@property
|
||||
def is_scale(self):
|
||||
return self._model.preprocessor.is_scale
|
||||
|
||||
@is_scale.setter
|
||||
def is_scale(self, value):
|
||||
assert isinstance(
|
||||
value, bool), "The value to set `is_scale` must be type of bool."
|
||||
self._model.preprocessor.is_scale = value
|
||||
|
||||
@property
|
||||
def scale(self):
|
||||
return self._model.preprocessor.scale
|
||||
|
||||
@scale.setter
|
||||
def scale(self, value):
|
||||
assert isinstance(
|
||||
value, list), "The value to set `scale` must be type of list."
|
||||
self._model.preprocessor.scale = value
|
||||
|
||||
@property
|
||||
def mean(self):
|
||||
return self._model.preprocessor.mean
|
||||
|
||||
@mean.setter
|
||||
def mean(self, value):
|
||||
assert isinstance(
|
||||
value, list), "The value to set `mean` must be type of list."
|
||||
self._model.preprocessor.mean = value
|
||||
|
||||
@property
|
||||
def rec_image_shape(self):
|
||||
return self._model.preprocessor.rec_image_shape
|
||||
|
Reference in New Issue
Block a user