[Doc] Update examples to use the newest api (#731)

use the latest api
This commit is contained in:
Jason
2022-11-28 22:01:51 +08:00
committed by GitHub
parent 4351ce8665
commit 03e360d71d
27 changed files with 65 additions and 92 deletions

View File

@@ -36,7 +36,7 @@ void CpuInfer(const std::string& model_dir, const std::string& image_file) {
auto im = cv::imread(image_file);
fastdeploy::vision::ClassifyResult res;
if (!model.Predict(&im, &res)) {
if (!model.Predict(im, &res)) {
std::cerr << "Failed to predict." << std::endl;
return;
}
@@ -61,7 +61,7 @@ void GpuInfer(const std::string& model_dir, const std::string& image_file) {
auto im = cv::imread(image_file);
fastdeploy::vision::ClassifyResult res;
if (!model.Predict(&im, &res)) {
if (!model.Predict(im, &res)) {
std::cerr << "Failed to predict." << std::endl;
return;
}
@@ -87,7 +87,7 @@ void IpuInfer(const std::string& model_dir, const std::string& image_file) {
auto im = cv::imread(image_file);
fastdeploy::vision::ClassifyResult res;
if (!model.Predict(&im, &res)) {
if (!model.Predict(im, &res)) {
std::cerr << "Failed to predict." << std::endl;
return;
}
@@ -113,7 +113,7 @@ void TrtInfer(const std::string& model_dir, const std::string& image_file) {
auto im = cv::imread(image_file);
fastdeploy::vision::ClassifyResult res;
if (!model.Predict(&im, &res)) {
if (!model.Predict(im, &res)) {
std::cerr << "Failed to predict." << std::endl;
return;
}

View File

@@ -53,5 +53,5 @@ model = fd.vision.classification.PaddleClasModel(
# 预测图片分类结果
im = cv2.imread(args.image)
result = model.predict(im.copy(), args.topk)
result = model.predict(im, args.topk)
print(result)

View File

@@ -31,10 +31,9 @@ void InitAndInfer(const std::string& model_dir, const std::string& image_file,
assert(model.Initialized());
auto im = cv::imread(image_file);
auto im_bak = im.clone();
fastdeploy::vision::ClassifyResult res;
if (!model.Predict(&im, &res)) {
if (!model.Predict(im, &res)) {
std::cerr << "Failed to predict." << std::endl;
return;
}

View File

@@ -1,10 +0,0 @@
rm -rf build
mkdir build
cd build
#/xieyunyao/project/FastDeploy
cmake .. -DFASTDEPLOY_INSTALL_DIR=/xieyunyao/project/FastDeploy
make -j

View File

@@ -78,5 +78,5 @@ model = fd.vision.classification.PaddleClasModel(
# 预测图片检测结果
im = cv2.imread(args.image)
result = model.predict(im.copy())
result = model.predict(im)
print(result)

View File

@@ -35,7 +35,7 @@ void InitAndInfer(const std::string& model_dir, const std::string& image_file) {
auto im = cv::imread(image_file);
fastdeploy::vision::ClassifyResult res;
if (!model.Predict(&im, &res)) {
if (!model.Predict(im, &res)) {
std::cerr << "Failed to predict." << std::endl;
return;
}

View File

@@ -34,16 +34,15 @@ void CpuInfer(const std::string& model_dir, const std::string& image_file) {
}
auto im = cv::imread(image_file);
auto im_bak = im.clone();
fastdeploy::vision::DetectionResult res;
if (!model.Predict(&im, &res)) {
if (!model.Predict(im, &res)) {
std::cerr << "Failed to predict." << std::endl;
return;
}
std::cout << res.Str() << std::endl;
auto vis_im = fastdeploy::vision::Visualize::VisDetection(im_bak, res, 0.5);
auto vis_im = fastdeploy::vision::VisDetection(im, res, 0.5);
cv::imwrite("vis_result.jpg", vis_im);
std::cout << "Visualized result saved in ./vis_result.jpg" << std::endl;
}
@@ -63,16 +62,15 @@ void GpuInfer(const std::string& model_dir, const std::string& image_file) {
}
auto im = cv::imread(image_file);
auto im_bak = im.clone();
fastdeploy::vision::DetectionResult res;
if (!model.Predict(&im, &res)) {
if (!model.Predict(im, &res)) {
std::cerr << "Failed to predict." << std::endl;
return;
}
std::cout << res.Str() << std::endl;
auto vis_im = fastdeploy::vision::Visualize::VisDetection(im_bak, res, 0.5);
auto vis_im = fastdeploy::vision::VisDetection(im, res, 0.5);
cv::imwrite("vis_result.jpg", vis_im);
std::cout << "Visualized result saved in ./vis_result.jpg" << std::endl;
}

View File

@@ -34,16 +34,15 @@ void CpuInfer(const std::string& model_dir, const std::string& image_file) {
}
auto im = cv::imread(image_file);
auto im_bak = im.clone();
fastdeploy::vision::DetectionResult res;
if (!model.Predict(&im, &res)) {
if (!model.Predict(im, &res)) {
std::cerr << "Failed to predict." << std::endl;
return;
}
std::cout << res.Str() << std::endl;
auto vis_im = fastdeploy::vision::Visualize::VisDetection(im_bak, res, 0.5);
auto vis_im = fastdeploy::vision::VisDetection(im, res, 0.5);
cv::imwrite("vis_result.jpg", vis_im);
std::cout << "Visualized result saved in ./vis_result.jpg" << std::endl;
}
@@ -63,16 +62,15 @@ void GpuInfer(const std::string& model_dir, const std::string& image_file) {
}
auto im = cv::imread(image_file);
auto im_bak = im.clone();
fastdeploy::vision::DetectionResult res;
if (!model.Predict(&im, &res)) {
if (!model.Predict(im, &res)) {
std::cerr << "Failed to predict." << std::endl;
return;
}
std::cout << res.Str() << std::endl;
auto vis_im = fastdeploy::vision::Visualize::VisDetection(im_bak, res, 0.5);
auto vis_im = fastdeploy::vision::VisDetection(im, res, 0.5);
cv::imwrite("vis_result.jpg", vis_im);
std::cout << "Visualized result saved in ./vis_result.jpg" << std::endl;
}

View File

@@ -34,16 +34,15 @@ void CpuInfer(const std::string& model_dir, const std::string& image_file) {
}
auto im = cv::imread(image_file);
auto im_bak = im.clone();
fastdeploy::vision::DetectionResult res;
if (!model.Predict(&im, &res)) {
if (!model.Predict(im, &res)) {
std::cerr << "Failed to predict." << std::endl;
return;
}
std::cout << res.Str() << std::endl;
auto vis_im = fastdeploy::vision::Visualize::VisDetection(im_bak, res, 0.5);
auto vis_im = fastdeploy::vision::VisDetection(im, res, 0.5);
cv::imwrite("vis_result.jpg", vis_im);
std::cout << "Visualized result saved in ./vis_result.jpg" << std::endl;
}
@@ -63,16 +62,15 @@ void GpuInfer(const std::string& model_dir, const std::string& image_file) {
}
auto im = cv::imread(image_file);
auto im_bak = im.clone();
fastdeploy::vision::DetectionResult res;
if (!model.Predict(&im, &res)) {
if (!model.Predict(im, &res)) {
std::cerr << "Failed to predict." << std::endl;
return;
}
std::cout << res.Str() << std::endl;
auto vis_im = fastdeploy::vision::Visualize::VisDetection(im_bak, res, 0.5);
auto vis_im = fastdeploy::vision::VisDetection(im, res, 0.5);
cv::imwrite("vis_result.jpg", vis_im);
std::cout << "Visualized result saved in ./vis_result.jpg" << std::endl;
}
@@ -93,16 +91,15 @@ void TrtInfer(const std::string& model_dir, const std::string& image_file) {
}
auto im = cv::imread(image_file);
auto im_bak = im.clone();
fastdeploy::vision::DetectionResult res;
if (!model.Predict(&im, &res)) {
if (!model.Predict(im, &res)) {
std::cerr << "Failed to predict." << std::endl;
return;
}
std::cout << res.Str() << std::endl;
auto vis_im = fastdeploy::vision::Visualize::VisDetection(im_bak, res, 0.5);
auto vis_im = fastdeploy::vision::VisDetection(im, res, 0.5);
cv::imwrite("vis_result.jpg", vis_im);
std::cout << "Visualized result saved in ./vis_result.jpg" << std::endl;
}

View File

@@ -34,16 +34,15 @@ void CpuInfer(const std::string& model_dir, const std::string& image_file) {
}
auto im = cv::imread(image_file);
auto im_bak = im.clone();
fastdeploy::vision::DetectionResult res;
if (!model.Predict(&im, &res)) {
if (!model.Predict(im, &res)) {
std::cerr << "Failed to predict." << std::endl;
return;
}
std::cout << res.Str() << std::endl;
auto vis_im = fastdeploy::vision::Visualize::VisDetection(im_bak, res, 0.5);
auto vis_im = fastdeploy::vision::VisDetection(im, res, 0.5);
cv::imwrite("vis_result.jpg", vis_im);
std::cout << "Visualized result saved in ./vis_result.jpg" << std::endl;
}
@@ -63,16 +62,15 @@ void GpuInfer(const std::string& model_dir, const std::string& image_file) {
}
auto im = cv::imread(image_file);
auto im_bak = im.clone();
fastdeploy::vision::DetectionResult res;
if (!model.Predict(&im, &res)) {
if (!model.Predict(im, &res)) {
std::cerr << "Failed to predict." << std::endl;
return;
}
std::cout << res.Str() << std::endl;
auto vis_im = fastdeploy::vision::Visualize::VisDetection(im_bak, res, 0.5);
auto vis_im = fastdeploy::vision::VisDetection(im, res, 0.5);
cv::imwrite("vis_result.jpg", vis_im);
std::cout << "Visualized result saved in ./vis_result.jpg" << std::endl;
}

View File

@@ -36,7 +36,7 @@ void CpuInfer(const std::string& model_dir, const std::string& image_file) {
auto im = cv::imread(image_file);
fastdeploy::vision::DetectionResult res;
if (!model.Predict(&im, &res)) {
if (!model.Predict(im, &res)) {
std::cerr << "Failed to predict." << std::endl;
return;
}
@@ -64,7 +64,7 @@ void GpuInfer(const std::string& model_dir, const std::string& image_file) {
auto im = cv::imread(image_file);
fastdeploy::vision::DetectionResult res;
if (!model.Predict(&im, &res)) {
if (!model.Predict(im, &res)) {
std::cerr << "Failed to predict." << std::endl;
return;
}
@@ -93,7 +93,7 @@ void TrtInfer(const std::string& model_dir, const std::string& image_file) {
auto im = cv::imread(image_file);
fastdeploy::vision::DetectionResult res;
if (!model.Predict(&im, &res)) {
if (!model.Predict(im, &res)) {
std::cerr << "Failed to predict." << std::endl;
return;
}

View File

@@ -35,16 +35,15 @@ void CpuInfer(const std::string& model_dir, const std::string& image_file) {
}
auto im = cv::imread(image_file);
auto im_bak = im.clone();
fastdeploy::vision::DetectionResult res;
if (!model.Predict(&im, &res)) {
if (!model.Predict(im, &res)) {
std::cerr << "Failed to predict." << std::endl;
return;
}
std::cout << res.Str() << std::endl;
auto vis_im = fastdeploy::vision::VisDetection(im_bak, res, 0.5);
auto vis_im = fastdeploy::vision::VisDetection(im, res, 0.5);
cv::imwrite("vis_result.jpg", vis_im);
std::cout << "Visualized result saved in ./vis_result.jpg" << std::endl;
}
@@ -64,16 +63,15 @@ void GpuInfer(const std::string& model_dir, const std::string& image_file) {
}
auto im = cv::imread(image_file);
auto im_bak = im.clone();
fastdeploy::vision::DetectionResult res;
if (!model.Predict(&im, &res)) {
if (!model.Predict(im, &res)) {
std::cerr << "Failed to predict." << std::endl;
return;
}
std::cout << res.Str() << std::endl;
auto vis_im = fastdeploy::vision::VisDetection(im_bak, res, 0.5);
auto vis_im = fastdeploy::vision::VisDetection(im, res, 0.5);
cv::imwrite("vis_result.jpg", vis_im);
std::cout << "Visualized result saved in ./vis_result.jpg" << std::endl;
}

View File

@@ -34,16 +34,15 @@ void CpuInfer(const std::string& model_dir, const std::string& image_file) {
}
auto im = cv::imread(image_file);
auto im_bak = im.clone();
fastdeploy::vision::DetectionResult res;
if (!model.Predict(&im, &res)) {
if (!model.Predict(im, &res)) {
std::cerr << "Failed to predict." << std::endl;
return;
}
std::cout << res.Str() << std::endl;
auto vis_im = fastdeploy::vision::Visualize::VisDetection(im_bak, res, 0.5);
auto vis_im = fastdeploy::vision::VisDetection(im, res, 0.5);
cv::imwrite("vis_result.jpg", vis_im);
std::cout << "Visualized result saved in ./vis_result.jpg" << std::endl;
}
@@ -63,16 +62,15 @@ void GpuInfer(const std::string& model_dir, const std::string& image_file) {
}
auto im = cv::imread(image_file);
auto im_bak = im.clone();
fastdeploy::vision::DetectionResult res;
if (!model.Predict(&im, &res)) {
if (!model.Predict(im, &res)) {
std::cerr << "Failed to predict." << std::endl;
return;
}
std::cout << res.Str() << std::endl;
auto vis_im = fastdeploy::vision::Visualize::VisDetection(im_bak, res, 0.5);
auto vis_im = fastdeploy::vision::VisDetection(im, res, 0.5);
cv::imwrite("vis_result.jpg", vis_im);
std::cout << "Visualized result saved in ./vis_result.jpg" << std::endl;
}

View File

@@ -34,16 +34,15 @@ void CpuInfer(const std::string& model_dir, const std::string& image_file) {
}
auto im = cv::imread(image_file);
auto im_bak = im.clone();
fastdeploy::vision::DetectionResult res;
if (!model.Predict(&im, &res)) {
if (!model.Predict(im, &res)) {
std::cerr << "Failed to predict." << std::endl;
return;
}
std::cout << res.Str() << std::endl;
auto vis_im = fastdeploy::vision::Visualize::VisDetection(im_bak, res, 0.5);
auto vis_im = fastdeploy::vision::VisDetection(im, res, 0.5);
cv::imwrite("vis_result.jpg", vis_im);
std::cout << "Visualized result saved in ./vis_result.jpg" << std::endl;
}
@@ -63,16 +62,15 @@ void GpuInfer(const std::string& model_dir, const std::string& image_file) {
}
auto im = cv::imread(image_file);
auto im_bak = im.clone();
fastdeploy::vision::DetectionResult res;
if (!model.Predict(&im, &res)) {
if (!model.Predict(im, &res)) {
std::cerr << "Failed to predict." << std::endl;
return;
}
std::cout << res.Str() << std::endl;
auto vis_im = fastdeploy::vision::Visualize::VisDetection(im_bak, res, 0.5);
auto vis_im = fastdeploy::vision::VisDetection(im, res, 0.5);
cv::imwrite("vis_result.jpg", vis_im);
std::cout << "Visualized result saved in ./vis_result.jpg" << std::endl;
}
@@ -93,16 +91,15 @@ void TrtInfer(const std::string& model_dir, const std::string& image_file) {
}
auto im = cv::imread(image_file);
auto im_bak = im.clone();
fastdeploy::vision::DetectionResult res;
if (!model.Predict(&im, &res)) {
if (!model.Predict(im, &res)) {
std::cerr << "Failed to predict." << std::endl;
return;
}
std::cout << res.Str() << std::endl;
auto vis_im = fastdeploy::vision::Visualize::VisDetection(im_bak, res, 0.5);
auto vis_im = fastdeploy::vision::VisDetection(im, res, 0.5);
cv::imwrite("vis_result.jpg", vis_im);
std::cout << "Visualized result saved in ./vis_result.jpg" << std::endl;
}

View File

@@ -61,7 +61,7 @@ if args.image is None:
else:
image = args.image
im = cv2.imread(image)
result = model.predict(im.copy())
result = model.predict(im)
print(result)
# 预测结果可视化

View File

@@ -68,7 +68,7 @@ if args.image is None:
else:
image = args.image
im = cv2.imread(image)
result = model.predict(im.copy())
result = model.predict(im)
print(result)
# 预测结果可视化

View File

@@ -59,7 +59,7 @@ if args.image is None:
else:
image = args.image
im = cv2.imread(image)
result = model.predict(im.copy())
result = model.predict(im)
print(result)
# 预测结果可视化

View File

@@ -61,7 +61,7 @@ if args.image is None:
else:
image = args.image
im = cv2.imread(image)
result = model.predict(im.copy())
result = model.predict(im)
print(result)
# 预测结果可视化

View File

@@ -60,7 +60,7 @@ if args.image is None:
else:
image = args.image
im = cv2.imread(image)
result = model.predict(im.copy())
result = model.predict(im)
print(result)
# 预测结果可视化

View File

@@ -41,7 +41,7 @@ model = fd.vision.detection.SSD(
# 预测图片检测结果
im = cv2.imread(args.image)
result = model.predict(im.copy())
result = model.predict(im)
print(result)
# 预测结果可视化

View File

@@ -59,7 +59,7 @@ if args.image is None:
else:
image = args.image
im = cv2.imread(image)
result = model.predict(im.copy())
result = model.predict(im)
print(result)
# 预测结果可视化

View File

@@ -59,7 +59,7 @@ if args.image is None:
else:
image = args.image
im = cv2.imread(image)
result = model.predict(im.copy())
result = model.predict(im)
print(result)
# 预测结果可视化

View File

@@ -30,17 +30,16 @@ void InitAndInfer(const std::string& model_dir, const std::string& image_file,
assert(model.Initialized());
auto im = cv::imread(image_file);
auto im_bak = im.clone();
fastdeploy::vision::DetectionResult res;
if (!model.Predict(&im, &res)) {
if (!model.Predict(im, &res)) {
std::cerr << "Failed to predict." << std::endl;
return;
}
std::cout << res.Str() << std::endl;
auto vis_im = fastdeploy::vision::Visualize::VisDetection(im_bak, res, 0.5);
auto vis_im = fastdeploy::vision::VisDetection(im, res, 0.5);
cv::imwrite("vis_result.jpg", vis_im);
std::cout << "Visualized result saved in ./vis_result.jpg" << std::endl;

View File

@@ -78,7 +78,7 @@ model = fd.vision.detection.PPYOLOE(
# 预测图片检测结果
im = cv2.imread(args.image)
result = model.predict(im.copy())
result = model.predict(im)
print(result)
# 预测结果可视化

View File

@@ -50,7 +50,7 @@ if __name__ == "__main__":
# 预测图片分割结果
im = cv2.imread(args.image)
result = model.predict(im.copy())
result = model.predict(im)
print(result)
# 可视化结果

View File

@@ -61,16 +61,15 @@ void CpuInfer(const std::string& model_dir, const std::string& image_file) {
}
auto im = cv::imread(image_file);
auto im_bak = im.clone();
fastdeploy::vision::DetectionResult res;
if (!model.Predict(&im, &res)) {
if (!model.Predict(im, &res)) {
std::cerr << "Failed to predict." << std::endl;
return;
}
std::cout << res.Str() << std::endl;
auto vis_im = fastdeploy::vision::Visualize::VisDetection(im_bak, res, 0.5);
auto vis_im = fastdeploy::vision::VisDetection(im, res, 0.5);
cv::imwrite("vis_result.jpg", vis_im);
std::cout << "Visualized result saved in ./vis_result.jpg" << std::endl;
}
@@ -109,16 +108,17 @@ void GpuInfer(const std::string& model_dir, const std::string& image_file) {
}
auto im = cv::imread(image_file);
auto im_bak = im.clone();
fastdeploy::vision::DetectionResult res;
if (!model.Predict(&im, &res)) {
for (size_t i = 0; i < 10; ++i) {
if (!model.Predict(im, &res)) {
std::cerr << "Failed to predict." << std::endl;
return;
}
}
std::cout << res.Str() << std::endl;
auto vis_im = fastdeploy::vision::Visualize::VisDetection(im_bak, res, 0.5);
auto vis_im = fastdeploy::vision::VisDetection(im, res, 0.5);
cv::imwrite("vis_result.jpg", vis_im);
std::cout << "Visualized result saved in ./vis_result.jpg" << std::endl;
}

View File

@@ -70,7 +70,8 @@ model = fd.vision.detection.PPYOLOE(
# 预测图片检测结果
im = cv2.imread(args.image)
result = model.predict(im.copy())
for i in range(10):
result = model.predict(im)
print(result)
# 预测结果可视化