mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-05 08:37:06 +08:00
[Doc]Add English version of documents in docs/cn and api/vision_results (#931)
* 第一次提交 * 补充一处漏翻译 * deleted: docs/en/quantize.md * Update one translation * Update en version * Update one translation in code * Standardize one writing * Standardize one writing * Update some en version * Fix a grammer problem * Update en version for api/vision result * Merge branch 'develop' of https://github.com/charl-u/FastDeploy into develop * Checkout the link in README in vision_results/ to the en documents * Modify a title * Add link to serving/docs/ * Finish translation of demo.md
This commit is contained in:
@@ -1,3 +1,5 @@
|
||||
English | [中文](../../cn/build_and_install/a311d.md)
|
||||
|
||||
# How to Build A311D Deployment Environment
|
||||
|
||||
FastDeploy supports AI deployment on Rockchip Soc based on Paddle Lite backend. For more detailed information, please refer to: [Paddle Lite Deployment Example](https://www.paddlepaddle.org.cn/lite/develop/demo_guides/verisilicon_timvx.html).
|
||||
|
@@ -1,3 +1,5 @@
|
||||
English | [中文](../../cn/build_and_install/android.md)
|
||||
|
||||
# How to Build FastDeploy Android C++ SDK
|
||||
|
||||
FastDeploy supports Paddle Lite backend on Android. It supports both armeabi-v7a and arm64-v8a cpu architectures, and supports fp16 precision inference on the armv8.2 architecture. The relevant compilation options are described as follows:
|
||||
|
@@ -1,4 +1,4 @@
|
||||
|
||||
English | [中文](../../cn/build_and_install/cpu.md)
|
||||
|
||||
# How to Build CPU Deployment Environment
|
||||
|
||||
|
@@ -1,4 +1,5 @@
|
||||
English | [中文](../../cn/build_and_install/download_prebuilt_libraries.md)
|
||||
|
||||
# How to Install Prebuilt Library
|
||||
|
||||
FastDeploy provides pre-built libraries for developers to download and install directly. Meanwhile, FastDeploy also offers easy access to compile so that developers can compile FastDeploy according to their own needs.
|
||||
@@ -92,7 +93,7 @@ Install the released version(Latest 1.0.1 for now, Android is 1.0.1)
|
||||
| Mac OSX x64 | [fastdeploy-osx-x86_64-1.0.1.tgz](https://bj.bcebos.com/fastdeploy/release/cpp/fastdeploy-osx-x86_64-1.0.1.tgz) | clang++ 10.0.0|
|
||||
| Mac OSX arm64 | [fastdeploy-osx-arm64-1.0.1.tgz](https://bj.bcebos.com/fastdeploy/release/cpp/fastdeploy-osx-arm64-1.0.1.tgz) | clang++ 13.0.0 |
|
||||
| Linux aarch64 | [fastdeploy-osx-arm64-1.0.1.tgz](https://bj.bcebos.com/fastdeploy/release/cpp/fastdeploy-linux-aarch64-1.0.1.tgz) | gcc 6.3 |
|
||||
| Android armv7&v8 | [fastdeploy-android-1.0.0-shared.tgz](https://bj.bcebos.com/fastdeploy/release/android/fastdeploy-android-1.0.0-shared.tgz)| NDK 25, clang++, support arm64-v8a及armeabi-v7a |
|
||||
| Android armv7&v8 | [fastdeploy-android-1.0.0-shared.tgz](https://bj.bcebos.com/fastdeploy/release/android/fastdeploy-android-1.0.0-shared.tgz)| NDK 25, clang++, support arm64-v8a and armeabi-v7a |
|
||||
|
||||
## Java SDK
|
||||
|
||||
@@ -109,6 +110,6 @@ Install the Develop version(Nightly build)
|
||||
| Linux x64 | [fastdeploy-linux-x64-0.0.0.tgz](https://fastdeploy.bj.bcebos.com/dev/cpp/fastdeploy-linux-x64-0.0.0.tgz) | g++ 8.2 |
|
||||
| Windows x64 | [fastdeploy-win-x64-0.0.0.zip](https://fastdeploy.bj.bcebos.com/dev/cpp/fastdeploy-win-x64-0.0.0.zip) | Visual Studio 16 2019 |
|
||||
| Mac OSX x64 | [fastdeploy-osx-arm64-0.0.0.tgz](https://bj.bcebos.com/fastdeploy/dev/cpp/fastdeploy-osx-arm64-0.0.0.tgz) | - |
|
||||
| Mac OSX arm64 | [fastdeploy-osx-arm64-0.0.0.tgz](https://fastdeploy.bj.bcebos.com/dev/cpp/fastdeploy-osx-arm64-0.0.0.tgz) | clang++ 13.0.0编译产出 |
|
||||
| Mac OSX arm64 | [fastdeploy-osx-arm64-0.0.0.tgz](https://fastdeploy.bj.bcebos.com/dev/cpp/fastdeploy-osx-arm64-0.0.0.tgz) | clang++ 13.0.0 to compile |
|
||||
| Linux aarch64 | - | - |
|
||||
| Android armv7&v8 | - | - |
|
||||
|
@@ -1,3 +1,4 @@
|
||||
English | [中文](../../cn/build_and_install/gpu.md)
|
||||
|
||||
# How to Build GPU Deployment Environment
|
||||
|
||||
|
@@ -1,3 +1,4 @@
|
||||
English | [中文](../../cn/build_and_install/ipu.md)
|
||||
|
||||
# How to Build IPU Deployment Environment
|
||||
|
||||
|
@@ -1,3 +1,4 @@
|
||||
English | [中文](../../cn/build_and_install/jetson.md)
|
||||
|
||||
# How to Build FastDeploy Library on Nvidia Jetson Platform
|
||||
|
||||
|
106
docs/en/build_and_install/rknpu2.md
Normal file
106
docs/en/build_and_install/rknpu2.md
Normal file
@@ -0,0 +1,106 @@
|
||||
English | [中文](../../cn/build_and_install/rknpu2.md)
|
||||
|
||||
# How to Build RKNPU2 Deployment Environment
|
||||
|
||||
## Notes
|
||||
FastDeploy has initial support for RKNPU2 deployments. If you find bugs while using, please report an issue to give us feedback.
|
||||
|
||||
## Introduction
|
||||
Currently, the following backend engines on the RK platform are supported:
|
||||
|
||||
| Backend | Platform | Model format supported | Description |
|
||||
|:------------------|:---------------------|:-------|:-------------------------------------------|
|
||||
| ONNX Runtime | RK356X <br> RK3588 | ONNX | Compile switch is controlled by setting `ENABLE_ORT_BACKEND` ON or OFF(default) |
|
||||
| RKNPU2 | RK356X <br> RK3588 | RKNN | Compile switch is controlled by setting `ENABLE_RKNPU2_BACKEND` ON or OFF(default) |
|
||||
|
||||
|
||||
## How to Build and Install C++ SDK
|
||||
|
||||
RKNPU2 only supports compiling on linux, the following steps are done on linux.
|
||||
|
||||
### Update the driver and install the compiling environment
|
||||
|
||||
|
||||
Before running the program, we need to install the latest RKNPU driver, which is currently updated to 1.4.0. To simplify the installation, here is a quick install script.
|
||||
|
||||
**Method 1: Install via script**
|
||||
```bash
|
||||
# Download and unzip rknpu2_device_install_1.4.0
|
||||
wget https://bj.bcebos.com/fastdeploy/third_libs/rknpu2_device_install_1.4.0.zip
|
||||
unzip rknpu2_device_install_1.4.0.zip
|
||||
|
||||
cd rknpu2_device_install_1.4.0
|
||||
# For RK3588
|
||||
sudo rknn_install_rk3588.sh
|
||||
# For RK356X
|
||||
sudo rknn_install_rk356X.sh
|
||||
```
|
||||
|
||||
**Method 2: Install via gitee**
|
||||
```bash
|
||||
# Install necessary packages
|
||||
sudo apt update -y
|
||||
sudo apt install -y python3
|
||||
sudo apt install -y python3-dev
|
||||
sudo apt install -y python3-pip
|
||||
sudo apt install -y gcc
|
||||
sudo apt install -y python3-opencv
|
||||
sudo apt install -y python3-numpy
|
||||
sudo apt install -y cmake
|
||||
|
||||
# download rknpu2
|
||||
# For RK3588
|
||||
git clone https://gitee.com/mirrors_rockchip-linux/rknpu2.git
|
||||
sudo cp ./rknpu2/runtime/RK3588/Linux/librknn_api/aarch64/* /usr/lib
|
||||
sudo cp ./rknpu2/runtime/RK3588/Linux/rknn_server/aarch64/usr/bin/* /usr/bin/
|
||||
|
||||
# For RK356X
|
||||
git clone https://gitee.com/mirrors_rockchip-linux/rknpu2.git
|
||||
sudo cp ./rknpu2/runtime/RK356X/Linux/librknn_api/aarch64/* /usr/lib
|
||||
sudo cp ./rknpu2/runtime/RK356X/Linux/rknn_server/aarch64/usr/bin/* /usr/bin/
|
||||
```
|
||||
|
||||
### Compile C++ SDK
|
||||
|
||||
```bash
|
||||
git clone https://github.com/PaddlePaddle/FastDeploy.git
|
||||
cd FastDeploy
|
||||
mkdir build && cd build
|
||||
|
||||
# Only a few key configurations are introduced here, see README.md for details.
|
||||
# -DENABLE_ORT_BACKEND: Whether to enable ONNX model, default OFF
|
||||
# -DENABLE_RKNPU2_BACKEND: Whether to enable RKNPU model, default OFF
|
||||
# -RKNN2_TARGET_SOC: Compile the SDK board model. Enter RK356X or RK3588 with case sensitive required.
|
||||
cmake .. -DENABLE_ORT_BACKEND=ON \
|
||||
-DENABLE_RKNPU2_BACKEND=ON \
|
||||
-DENABLE_VISION=ON \
|
||||
-DRKNN2_TARGET_SOC=RK3588 \
|
||||
-DCMAKE_INSTALL_PREFIX=${PWD}/fastdeploy-0.0.3
|
||||
make -j8
|
||||
make install
|
||||
```
|
||||
|
||||
### Compile Python SDK
|
||||
|
||||
Python packages depend on `wheel`, please run `pip install wheel` before compiling.
|
||||
|
||||
```bash
|
||||
git clone https://github.com/PaddlePaddle/FastDeploy.git
|
||||
cd FastDeploy
|
||||
cd python
|
||||
|
||||
export ENABLE_ORT_BACKEND=ON
|
||||
export ENABLE_RKNPU2_BACKEND=ON
|
||||
export ENABLE_VISION=ON
|
||||
export RKNN2_TARGET_SOC=RK3588
|
||||
python3 setup.py build
|
||||
python3 setup.py bdist_wheel
|
||||
|
||||
cd dist
|
||||
|
||||
pip3 install fastdeploy_python-0.0.0-cp39-cp39-linux_aarch64.whl
|
||||
```
|
||||
|
||||
## Model Deployment
|
||||
|
||||
Please refer to [RKNPU2 Model Deployment](../faq/rknpu2/rknpu2.md).
|
@@ -1,3 +1,5 @@
|
||||
English | [中文](../../cn/build_and_install/rv1126.md)
|
||||
|
||||
# How to Build RV1126 Deployment Environment
|
||||
|
||||
FastDeploy supports AI deployment on Rockchip Soc based on Paddle Lite backend. For more detailed information, please refer to: [Paddle Lite Deployment Example](https://www.paddlepaddle.org.cn/lite/develop/demo_guides/verisilicon_timvx.html).
|
||||
|
16
docs/en/build_and_install/third_libraries.md
Normal file
16
docs/en/build_and_install/third_libraries.md
Normal file
@@ -0,0 +1,16 @@
|
||||
English | [中文](../../cn/build_and_install/third_libraries.md)
|
||||
|
||||
# Third Library Dependency
|
||||
|
||||
FastDeploy will depend on the following third libraries according to compile options.
|
||||
|
||||
- OpenCV: OpenCV 3.4.16 library will be downloaded and pre-compiled automatically while ENABLE_VISION=ON.
|
||||
- ONNX Runimte: ONNX Runtime library will be downloaded automatically while ENABLE_ORT_BACKEND=ON.
|
||||
- OpenVINO: OpenVINO library will be downloaded automatically while ENABLE_OPENVINO_BACKEND=ON.
|
||||
|
||||
You can decide your own third libraries that exist in the environment by setting the following switches.
|
||||
|
||||
|
||||
- OPENCV_DIRECTORY: Specify the OpenCV path in your environment, e.g. `-DOPENCV_DIRECTORY=/usr/lib/aarch64-linux-gnu/cmake/opencv4/`
|
||||
- ORT_DIRECTORY: Specify the ONNX Runtime path in your environment, e.g.`-DORT_DIRECTORY=/download/onnxruntime-linux-x64-1.0.0`
|
||||
- OPENVINO_DIRECTORY: Specify the OpenVINO path in your environment, e.g.`-DOPENVINO_DIRECTORY=//download/openvino`
|
@@ -1,3 +1,5 @@
|
||||
English | [中文](../../cn/build_and_install/xpu.md)
|
||||
|
||||
# How to Build KunlunXin XPU Deployment Environment
|
||||
|
||||
FastDeploy supports deployment AI on KunlunXin XPU based on Paddle Lite backend. For more detailed information, please refer to: [Paddle Lite Deployment Example](https://www.paddlepaddle.org.cn/lite/develop/demo_guides/kunlunxin_xpu.html#xpu)。
|
||||
|
Reference in New Issue
Block a user