[Model] Support YOLOv8 (#1137)

* add GPL lisence

* add GPL-3.0 lisence

* add GPL-3.0 lisence

* add GPL-3.0 lisence

* support yolov8

* add pybind for yolov8

* add yolov8 readme

Co-authored-by: DefTruth <31974251+DefTruth@users.noreply.github.com>
This commit is contained in:
WJJ1995
2023-01-16 11:24:23 +08:00
committed by GitHub
parent a4b94b2c93
commit 02bd22422e
28 changed files with 1448 additions and 80 deletions

View File

@@ -0,0 +1,143 @@
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "fastdeploy/vision/detection/contrib/yolov8/postprocessor.h"
#include "fastdeploy/vision/utils/utils.h"
namespace fastdeploy {
namespace vision {
namespace detection {
YOLOv8Postprocessor::YOLOv8Postprocessor() {
conf_threshold_ = 0.25;
nms_threshold_ = 0.5;
multi_label_ = true;
max_wh_ = 7680.0;
}
bool YOLOv8Postprocessor::Run(
const std::vector<FDTensor>& tensors, std::vector<DetectionResult>* results,
const std::vector<std::map<std::string, std::array<float, 2>>>& ims_info) {
int batch = tensors[0].shape[0];
// transpose
std::vector<int64_t> dim{0, 2, 1};
FDTensor tensor_transpose;
function::Transpose(tensors[0], &tensor_transpose, dim);
results->resize(batch);
for (size_t bs = 0; bs < batch; ++bs) {
(*results)[bs].Clear();
if (multi_label_) {
(*results)[bs].Reserve(tensor_transpose.shape[1] *
(tensor_transpose.shape[2] - 4));
} else {
(*results)[bs].Reserve(tensor_transpose.shape[1]);
}
if (tensor_transpose.dtype != FDDataType::FP32) {
FDERROR << "Only support post process with float32 data." << std::endl;
return false;
}
const float* data =
reinterpret_cast<const float*>(tensor_transpose.Data()) +
bs * tensor_transpose.shape[1] * tensor_transpose.shape[2];
for (size_t i = 0; i < tensor_transpose.shape[1]; ++i) {
int s = i * tensor_transpose.shape[2];
if (multi_label_) {
for (size_t j = 4; j < tensor_transpose.shape[2]; ++j) {
float confidence = data[s + j];
// filter boxes by conf_threshold
if (confidence <= conf_threshold_) {
continue;
}
int32_t label_id = j - 4;
// convert from [x, y, w, h] to [x1, y1, x2, y2]
(*results)[bs].boxes.emplace_back(std::array<float, 4>{
data[s] - data[s + 2] / 2.0f + label_id * max_wh_,
data[s + 1] - data[s + 3] / 2.0f + label_id * max_wh_,
data[s + 0] + data[s + 2] / 2.0f + label_id * max_wh_,
data[s + 1] + data[s + 3] / 2.0f + label_id * max_wh_});
(*results)[bs].label_ids.push_back(label_id);
(*results)[bs].scores.push_back(confidence);
}
} else {
const float* max_class_score = std::max_element(
data + s + 4, data + s + tensor_transpose.shape[2]);
float confidence = *max_class_score;
// filter boxes by conf_threshold
if (confidence <= conf_threshold_) {
continue;
}
int32_t label_id = std::distance(data + s + 4, max_class_score);
// convert from [x, y, w, h] to [x1, y1, x2, y2]
(*results)[bs].boxes.emplace_back(std::array<float, 4>{
data[s] - data[s + 2] / 2.0f + label_id * max_wh_,
data[s + 1] - data[s + 3] / 2.0f + label_id * max_wh_,
data[s + 0] + data[s + 2] / 2.0f + label_id * max_wh_,
data[s + 1] + data[s + 3] / 2.0f + label_id * max_wh_});
(*results)[bs].label_ids.push_back(label_id);
(*results)[bs].scores.push_back(confidence);
}
}
if ((*results)[bs].boxes.size() == 0) {
return true;
}
utils::NMS(&((*results)[bs]), nms_threshold_);
// scale the boxes to the origin image shape
auto iter_out = ims_info[bs].find("output_shape");
auto iter_ipt = ims_info[bs].find("input_shape");
FDASSERT(iter_out != ims_info[bs].end() && iter_ipt != ims_info[bs].end(),
"Cannot find input_shape or output_shape from im_info.");
float out_h = iter_out->second[0];
float out_w = iter_out->second[1];
float ipt_h = iter_ipt->second[0];
float ipt_w = iter_ipt->second[1];
float scale = std::min(out_h / ipt_h, out_w / ipt_w);
float pad_h = (out_h - ipt_h * scale) / 2;
float pad_w = (out_w - ipt_w * scale) / 2;
for (size_t i = 0; i < (*results)[bs].boxes.size(); ++i) {
int32_t label_id = ((*results)[bs].label_ids)[i];
// clip box
(*results)[bs].boxes[i][0] =
(*results)[bs].boxes[i][0] - max_wh_ * label_id;
(*results)[bs].boxes[i][1] =
(*results)[bs].boxes[i][1] - max_wh_ * label_id;
(*results)[bs].boxes[i][2] =
(*results)[bs].boxes[i][2] - max_wh_ * label_id;
(*results)[bs].boxes[i][3] =
(*results)[bs].boxes[i][3] - max_wh_ * label_id;
(*results)[bs].boxes[i][0] =
std::max(((*results)[bs].boxes[i][0] - pad_w) / scale, 0.0f);
(*results)[bs].boxes[i][1] =
std::max(((*results)[bs].boxes[i][1] - pad_h) / scale, 0.0f);
(*results)[bs].boxes[i][2] =
std::max(((*results)[bs].boxes[i][2] - pad_w) / scale, 0.0f);
(*results)[bs].boxes[i][3] =
std::max(((*results)[bs].boxes[i][3] - pad_h) / scale, 0.0f);
(*results)[bs].boxes[i][0] = std::min((*results)[bs].boxes[i][0], ipt_w);
(*results)[bs].boxes[i][1] = std::min((*results)[bs].boxes[i][1], ipt_h);
(*results)[bs].boxes[i][2] = std::min((*results)[bs].boxes[i][2], ipt_w);
(*results)[bs].boxes[i][3] = std::min((*results)[bs].boxes[i][3], ipt_h);
}
}
return true;
}
} // namespace detection
} // namespace vision
} // namespace fastdeploy