mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-06 00:57:33 +08:00
[Model] Support YOLOv8 (#1137)
* add GPL lisence * add GPL-3.0 lisence * add GPL-3.0 lisence * add GPL-3.0 lisence * support yolov8 * add pybind for yolov8 * add yolov8 readme Co-authored-by: DefTruth <31974251+DefTruth@users.noreply.github.com>
This commit is contained in:
58
examples/vision/detection/yolov8/python/infer.py
Executable file
58
examples/vision/detection/yolov8/python/infer.py
Executable file
@@ -0,0 +1,58 @@
|
||||
import fastdeploy as fd
|
||||
import cv2
|
||||
import os
|
||||
|
||||
|
||||
def parse_arguments():
|
||||
import argparse
|
||||
import ast
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument("--model", default=None, help="Path of yolov8 model.")
|
||||
parser.add_argument(
|
||||
"--image", default=None, help="Path of test image file.")
|
||||
parser.add_argument(
|
||||
"--device",
|
||||
type=str,
|
||||
default='cpu',
|
||||
help="Type of inference device, support 'cpu' or 'gpu' or 'kunlunxin'.")
|
||||
parser.add_argument(
|
||||
"--use_trt",
|
||||
type=ast.literal_eval,
|
||||
default=False,
|
||||
help="Wether to use tensorrt.")
|
||||
return parser.parse_args()
|
||||
|
||||
|
||||
def build_option(args):
|
||||
option = fd.RuntimeOption()
|
||||
|
||||
if args.device.lower() == "gpu":
|
||||
option.use_gpu()
|
||||
|
||||
if args.device.lower() == "ascend":
|
||||
option.use_ascend()
|
||||
|
||||
if args.use_trt:
|
||||
option.use_trt_backend()
|
||||
option.set_trt_input_shape("images", [1, 3, 640, 640])
|
||||
return option
|
||||
|
||||
|
||||
args = parse_arguments()
|
||||
|
||||
# Configure runtime, load model
|
||||
runtime_option = build_option(args)
|
||||
model = fd.vision.detection.YOLOv8(args.model, runtime_option=runtime_option)
|
||||
|
||||
# Predicting image
|
||||
if args.image is None:
|
||||
image = fd.utils.get_detection_test_image()
|
||||
else:
|
||||
image = args.image
|
||||
im = cv2.imread(image)
|
||||
result = model.predict(im)
|
||||
|
||||
# Visualization
|
||||
vis_im = fd.vision.vis_detection(im, result)
|
||||
cv2.imwrite("visualized_result.jpg", vis_im)
|
||||
print("Visualized result save in ./visualized_result.jpg")
|
Reference in New Issue
Block a user