mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-06 17:17:14 +08:00
[Model] Support YOLOv8 (#1137)
* add GPL lisence * add GPL-3.0 lisence * add GPL-3.0 lisence * add GPL-3.0 lisence * support yolov8 * add pybind for yolov8 * add yolov8 readme Co-authored-by: DefTruth <31974251+DefTruth@users.noreply.github.com>
This commit is contained in:
78
examples/vision/detection/yolov8/python/README_CN.md
Normal file
78
examples/vision/detection/yolov8/python/README_CN.md
Normal file
@@ -0,0 +1,78 @@
|
||||
[English](README.md) | 简体中文
|
||||
# YOLOv8 Python部署示例
|
||||
|
||||
在部署前,需确认以下两个步骤
|
||||
|
||||
- 1. 软硬件环境满足要求,参考[FastDeploy环境要求](../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md)
|
||||
- 2. FastDeploy Python whl包安装,参考[FastDeploy Python安装](../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md)
|
||||
|
||||
本目录下提供`infer.py`快速完成YOLOv8在CPU/GPU,以及GPU上通过TensorRT加速部署的示例。执行如下脚本即可完成
|
||||
|
||||
```bash
|
||||
#下载部署示例代码
|
||||
git clone https://github.com/PaddlePaddle/FastDeploy.git
|
||||
cd examples/vision/detection/yolov8/python/
|
||||
|
||||
#下载yolov8模型文件和测试图片
|
||||
wget https://bj.bcebos.com/paddlehub/fastdeploy/yolov8.onnx
|
||||
wget https://gitee.com/paddlepaddle/PaddleDetection/raw/release/2.4/demo/000000014439.jpg
|
||||
|
||||
# CPU推理
|
||||
python infer.py --model yolov8.onnx --image 000000014439.jpg --device cpu
|
||||
# GPU推理
|
||||
python infer.py --model yolov8.onnx --image 000000014439.jpg --device gpu
|
||||
# GPU上使用TensorRT推理
|
||||
python infer.py --model yolov8.onnx --image 000000014439.jpg --device gpu --use_trt True
|
||||
```
|
||||
|
||||
运行完成可视化结果如下图所示
|
||||
|
||||
<img width="640" src="https://user-images.githubusercontent.com/67993288/184309358-d803347a-8981-44b6-b589-4608021ad0f4.jpg">
|
||||
|
||||
## YOLOv8 Python接口
|
||||
|
||||
```python
|
||||
fastdeploy.vision.detection.YOLOv8(model_file, params_file=None, runtime_option=None, model_format=ModelFormat.ONNX)
|
||||
```
|
||||
|
||||
YOLOv8模型加载和初始化,其中model_file为导出的ONNX模型格式
|
||||
|
||||
**参数**
|
||||
|
||||
> * **model_file**(str): 模型文件路径
|
||||
> * **params_file**(str): 参数文件路径,当模型格式为ONNX格式时,此参数无需设定
|
||||
> * **runtime_option**(RuntimeOption): 后端推理配置,默认为None,即采用默认配置
|
||||
> * **model_format**(ModelFormat): 模型格式,默认为ONNX
|
||||
|
||||
### predict函数
|
||||
|
||||
> ```python
|
||||
> YOLOv8.predict(image_data)
|
||||
> ```
|
||||
>
|
||||
> 模型预测结口,输入图像直接输出检测结果。
|
||||
>
|
||||
> **参数**
|
||||
>
|
||||
> > * **image_data**(np.ndarray): 输入数据,注意需为HWC,BGR格式
|
||||
|
||||
> **返回**
|
||||
>
|
||||
> > 返回`fastdeploy.vision.DetectionResult`结构体,结构体说明参考文档[视觉模型预测结果](../../../../../docs/api/vision_results/)
|
||||
|
||||
### 类成员属性
|
||||
#### 预处理参数
|
||||
用户可按照自己的实际需求,修改下列预处理参数,从而影响最终的推理和部署效果
|
||||
|
||||
> > * **size**(list[int]): 通过此参数修改预处理过程中resize的大小,包含两个整型元素,表示[width, height], 默认值为[640, 640]
|
||||
> > * **padding_value**(list[float]): 通过此参数可以修改图片在resize时候做填充(padding)的值, 包含三个浮点型元素, 分别表示三个通道的值, 默认值为[114, 114, 114]
|
||||
> > * **is_no_pad**(bool): 通过此参数让图片是否通过填充的方式进行resize, `is_no_pad=True` 表示不使用填充的方式,默认值为`is_no_pad=False`
|
||||
> > * **is_mini_pad**(bool): 通过此参数可以将resize之后图像的宽高这是为最接近`size`成员变量的值, 并且满足填充的像素大小是可以被`stride`成员变量整除的。默认值为`is_mini_pad=False`
|
||||
> > * **stride**(int): 配合`stris_mini_padide`成员变量使用, 默认值为`stride=32`
|
||||
|
||||
## 其它文档
|
||||
|
||||
- [YOLOv8 模型介绍](..)
|
||||
- [YOLOv8 C++部署](../cpp)
|
||||
- [模型预测结果说明](../../../../../docs/api/vision_results/)
|
||||
- [如何切换模型推理后端引擎](../../../../../docs/cn/faq/how_to_change_backend.md)
|
Reference in New Issue
Block a user