[Model] Support YOLOv8 (#1137)

* add GPL lisence

* add GPL-3.0 lisence

* add GPL-3.0 lisence

* add GPL-3.0 lisence

* support yolov8

* add pybind for yolov8

* add yolov8 readme

Co-authored-by: DefTruth <31974251+DefTruth@users.noreply.github.com>
This commit is contained in:
WJJ1995
2023-01-16 11:24:23 +08:00
committed by GitHub
parent a4b94b2c93
commit 02bd22422e
28 changed files with 1448 additions and 80 deletions

View File

@@ -0,0 +1,78 @@
[English](README.md) | 简体中文
# YOLOv8 Python部署示例
在部署前,需确认以下两个步骤
- 1. 软硬件环境满足要求,参考[FastDeploy环境要求](../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md)
- 2. FastDeploy Python whl包安装参考[FastDeploy Python安装](../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md)
本目录下提供`infer.py`快速完成YOLOv8在CPU/GPU以及GPU上通过TensorRT加速部署的示例。执行如下脚本即可完成
```bash
#下载部署示例代码
git clone https://github.com/PaddlePaddle/FastDeploy.git
cd examples/vision/detection/yolov8/python/
#下载yolov8模型文件和测试图片
wget https://bj.bcebos.com/paddlehub/fastdeploy/yolov8.onnx
wget https://gitee.com/paddlepaddle/PaddleDetection/raw/release/2.4/demo/000000014439.jpg
# CPU推理
python infer.py --model yolov8.onnx --image 000000014439.jpg --device cpu
# GPU推理
python infer.py --model yolov8.onnx --image 000000014439.jpg --device gpu
# GPU上使用TensorRT推理
python infer.py --model yolov8.onnx --image 000000014439.jpg --device gpu --use_trt True
```
运行完成可视化结果如下图所示
<img width="640" src="https://user-images.githubusercontent.com/67993288/184309358-d803347a-8981-44b6-b589-4608021ad0f4.jpg">
## YOLOv8 Python接口
```python
fastdeploy.vision.detection.YOLOv8(model_file, params_file=None, runtime_option=None, model_format=ModelFormat.ONNX)
```
YOLOv8模型加载和初始化其中model_file为导出的ONNX模型格式
**参数**
> * **model_file**(str): 模型文件路径
> * **params_file**(str): 参数文件路径当模型格式为ONNX格式时此参数无需设定
> * **runtime_option**(RuntimeOption): 后端推理配置默认为None即采用默认配置
> * **model_format**(ModelFormat): 模型格式默认为ONNX
### predict函数
> ```python
> YOLOv8.predict(image_data)
> ```
>
> 模型预测结口,输入图像直接输出检测结果。
>
> **参数**
>
> > * **image_data**(np.ndarray): 输入数据注意需为HWCBGR格式
> **返回**
>
> > 返回`fastdeploy.vision.DetectionResult`结构体,结构体说明参考文档[视觉模型预测结果](../../../../../docs/api/vision_results/)
### 类成员属性
#### 预处理参数
用户可按照自己的实际需求,修改下列预处理参数,从而影响最终的推理和部署效果
> > * **size**(list[int]): 通过此参数修改预处理过程中resize的大小包含两个整型元素表示[width, height], 默认值为[640, 640]
> > * **padding_value**(list[float]): 通过此参数可以修改图片在resize时候做填充(padding)的值, 包含三个浮点型元素, 分别表示三个通道的值, 默认值为[114, 114, 114]
> > * **is_no_pad**(bool): 通过此参数让图片是否通过填充的方式进行resize, `is_no_pad=True` 表示不使用填充的方式,默认值为`is_no_pad=False`
> > * **is_mini_pad**(bool): 通过此参数可以将resize之后图像的宽高这是为最接近`size`成员变量的值, 并且满足填充的像素大小是可以被`stride`成员变量整除的。默认值为`is_mini_pad=False`
> > * **stride**(int): 配合`stris_mini_padide`成员变量使用, 默认值为`stride=32`
## 其它文档
- [YOLOv8 模型介绍](..)
- [YOLOv8 C++部署](../cpp)
- [模型预测结果说明](../../../../../docs/api/vision_results/)
- [如何切换模型推理后端引擎](../../../../../docs/cn/faq/how_to_change_backend.md)

View File

@@ -0,0 +1,58 @@
import fastdeploy as fd
import cv2
import os
def parse_arguments():
import argparse
import ast
parser = argparse.ArgumentParser()
parser.add_argument("--model", default=None, help="Path of yolov8 model.")
parser.add_argument(
"--image", default=None, help="Path of test image file.")
parser.add_argument(
"--device",
type=str,
default='cpu',
help="Type of inference device, support 'cpu' or 'gpu' or 'kunlunxin'.")
parser.add_argument(
"--use_trt",
type=ast.literal_eval,
default=False,
help="Wether to use tensorrt.")
return parser.parse_args()
def build_option(args):
option = fd.RuntimeOption()
if args.device.lower() == "gpu":
option.use_gpu()
if args.device.lower() == "ascend":
option.use_ascend()
if args.use_trt:
option.use_trt_backend()
option.set_trt_input_shape("images", [1, 3, 640, 640])
return option
args = parse_arguments()
# Configure runtime, load model
runtime_option = build_option(args)
model = fd.vision.detection.YOLOv8(args.model, runtime_option=runtime_option)
# Predicting image
if args.image is None:
image = fd.utils.get_detection_test_image()
else:
image = args.image
im = cv2.imread(image)
result = model.predict(im)
# Visualization
vis_im = fd.vision.vis_detection(im, result)
cv2.imwrite("visualized_result.jpg", vis_im)
print("Visualized result save in ./visualized_result.jpg")