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Abstract  
 
The next generation of real-time streaming applications like video-conferencing apps will 
augment video streams that are generated and computed from the feed. Understanding 
computation overheads present in enabling such advanced features can inform scheduling 
strategies within the edge computing environments. This research project aims to explore the 
possibilities of distributing the components of WebRTC, the backbone technology for real-time 
video conferencing, across edge devices. We specifically focus on the analysis of the 
computational overheads associated with deploying augmented reality and FFmpeg filters in 
video streams. All contributions done as part of the project can be found here: 
https://github.com/Kalit31/WebRTC_research.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

https://github.com/Kalit31/WebRTC_research


1.​Introduction 
A.​WebRTC 

WebRTC, which stands for Web Real-Time Communication, provides an API as 
well as a protocol for peer-to-peer communication and data transmission. It finds 
a peer-to-peer path to exchange audio/video in an efficient and low-latency 
manner. The protocol is composed of 4 major sequential steps. I will explain each 
of them briefly below: 

1.​ Signalling -  
To initiate a WebRTC communication, the users must know whom they 
are going to communicate with and what data they will be sharing. This 
step helps to initiate the communication between two users. During the 
setup phase, an entity known as a signalling server acts as a proxy to route 
messages from one user to another. All messages use Session Description 
Protocol (SDP). Each user encodes their addresses, ICE candidates, 
security options and metadata about the audio/video tracks they wish to 
exchange. An important point to consider is that the connection between 
the user and the signalling server is not a WebRTC connection yet. Rather, 
the messages are sent using usual REST endpoints or websockets (we will 
use the latter in our setup).  

2.​ Connecting and NAT Traversal -  
Once the SDP messages are exchanged between the users, they can 
attempt a direct connection using a tool known as Interactive Connectivity 
Establishment (ICE). It is a protocol which assists in the establishing a 
direct communication between two machines without the need of a central 
server. Internally, they use a concept called ‘NAT Traversal’ and 
STUN/TURN servers.  

●​ NAT, which stands for Network Address Translation, is a 
technique used to map private IP addresses to public IP addresses 
and vice versa. NAT allows multiple devices on a local network to 
share a single public IP address when accessing the internet. It acts 
as an intermediary between the internal network and the outside 
world. 



 
Fig: An illustration of NAT 

 
●​ STUN, which stands for Session Traversal Utilities for NAT, is a 

protocol used to enable devices behind a NAT firewall or router to 
discover their public IP address and port mapping, and to facilitate 
the traversal of NATs in real-time communication applications like 
video conferencing. In simple terms, the user agent requests a 
STUN server to inform about its public IP address and port 
through NAT. 

 
Fig: An illustration of STUN server 

 
●​ TURN, which stands for Traversal using Relays around NAT, is a 

protocol used to facilitate communication between devices that are 
behind strict NATs, like Symmetric NAT, where STUN-based 
methods are not relevant. TURN provides a solution by relaying 
the traffic through a TURN server, which acts as an intermediary 
between the two clients. 



 
Fig: Comparison between TURN and STUN servers 

 
●​ In more detail, the ICE protocol enables devices to find the best 

possible network path to establish a direct communication channel. 
It collects all available candidates for how the devices can 
potentially connect. Among these candidates, it selects the 
candidates which form the most efficient path. Next, these 
candidates are relayed over to the remote peers using SDP through 
the signalling server.  

 

3.​ Securing the transport layer -  
The next step is to establish an encrypted transport channel for sharing 
data. WebRTC uses two protocols called Datagram Transport Layer 
Security (DTLS) - TLS over UDP, and Secure Real-Time Transport 
Protocol (SRTP) - encrypts RTP packets. The DTLS encrypted connection 
is used for DataChannel messages whereas audio/video transmission is 
secured using SRTP.  

 

4.​ Communicating with peers - 
WebRTC uses two protocols for communication namely Real-Time 
Transport Protocol (RTP) and Stream Control Transmission Protocol 



(SCTP). RTP is used to exchange media encrypted with SRTP whereas 
SCTP is used for exchanging messages with DTLS.  
 

 
Fig: A set of protocol stack involved in WebRTC 

 
 

As part of the current project, we use the WebRTC protocol to develop a 
video-conference application. 

B.​FFmpeg 
FFmpeg is an open-source and popular command line tool for processing video, 
audio and other multimedia files. It provides a wide range of tools for decoding, 
encoding, transcoding, multiplexing, demultiplexing, streaming, filtering and 
manipulating any type of multimedia files. It supports 100s of codecs including 
popular ones like H.264, VP9, AAC, and MP3.   
 
A typical usage of ffmpeg looks like this: a multimedia file is given as an input to 
ffmpeg. It then demultiplexes the audio and video tracks into separate data 
packets. These packets are then decoded into uncompressed frames. Here, 



additional processing and filtering can be performed on the frames like adjusting 
the brightness, scale, bitrate, etc. Next, the frames are encoded again and 
multiplexed into an output file.  
 
FFmpeg provides several low-level libraries, including libavcodec, libav, 
libswscale, for developing multimedia processing software.  
 
As part of the current project, we employ FFmpeg to stream source videos to 
users. This stream is later shared by each user over the WebRTC connection. 
Moreover, we compute the processing time for adding FFmpeg-based filters on 
top of each frame in the video stream. 

C.​Augmented Reality Filters 
With the rise in technological advancement in the realm of Augmented Reality 
(AR), AR-based filters are expected to become a commonplace. Today, there exist 
several social media applications like Instagram, Facebook, TikTok, Snapchat, 
and Whatsapp which employ these types of AR-filters. Augmented-Reality filters 
are digital overlays on top of video streams that add interactive elements to 
real-world environments. Some examples include, adding a hat on a person’s 
head, displaying crackers when a person is clapping, animating a person’s face, 
etc. 
 
The next-generation of real-time streaming applications will augment video 
streams with augmented reality assets which are computed from the feed. Thus, 
understanding the overheads they incur will serve to be crucial to develop 
scheduling strategies in edge computing environments. The overheads are not 
only limited to the latency, but also the energy and battery consumption.  

 
As part of the current project, we employ Google’s Mediapipe library to overlay 
AR filters (more details can be found later). The library worked well on CPU, 
however it posed several challenges in compatibility with GPU and Nvidia Jetson 
TX1 (discussed later).  

2.​Methodology and Discussions 
Let us start by designing the WebRTC video-conference application. We already 
discussed the basic overview of the protocols and APIs it offers. Now, let us see how they 
work in practice. 
 



 
Fig: WebRTC peer-to-peer connection setup 

 
The above figure provides a comprehensive illustration of the internal workings in a 
WebRTC peer-to-peer connection. Here is the brief description of each of the component: 

●​ Signalling server: It acts as the proxy server between the two clients 
before the WebRTC p2p connection is established. It relays SDP messages 
to-and-fro clients.  

●​ Client: It initiates a peer-connection, adds a H.264 video RTP track, 
generates an offer SDP with the above added track information and sends 
it to the signalling server. It also pings the STUN server asking for ICE 



candidates (entities to help locate a client on the Internet) and shares this 
as well with the signalling server. The signalling server relays these 
messages with the other client. 

●​ STUN server: As discussed in the above section, its task is to fetch ICE 
candidates for the requesting client. 

●​ The offer which the client generates locally is set as the local description, 
and the answer which it receives for its offer is set as the remote 
description. The case is opposite for the other client. The second client sets 
the offer which was sent by the first one as the remote description. Also, it 
sets the answer which is to be sent to the other client as its local 
description. 

 
​ We implement the above setup using Pion’s WebRTC API implementation in Go.  
 

As our real-time video sharing setup is ready, let us shift our gears to understand the 
processing and filtering in video streams using FFmpeg and Google’s mediapipe. 
 

 
Fig: Initial setup of our system 

 
​ The initial experiments are run on my local machine with the following stats: 

●​ Intel i7 processor with 12 cores 



●​ 16 GB RAM 
●​ NVIDIA GeForce GTX 1050 Ti/PCIe/SSE2 Graphics Card 

 
Since both the clients are running on the same machine, they cannot use the webcam 
video streams simultaneously. To mitigate this, we use FFmpeg to capture the video 
stream from the device camera, encode the stream as a MPEG transport stream and 
finally stream it over UDP to a multicast address. This way, both the clients can fetch the 
video stream from the multicast address, perform processing on it and exchange videos 
with their peers.  Below is the FFmpeg command for the same: 
 

ffmpeg -f v4l2 -i /dev/video0 -f mpegts udp://224.0.0.251:5353 

 
●​ -f v4l2: It tells ffmpeg to use video4linux2 format for capturing video from the 

device 
●​ -i /dev/video0: It tells ffmpeg to capture video from the first video device 

(webcam) 
●​ -f mpegts: It tells ffmpeg to encode the video stream in MPEG-TS format. 
●​ udp://224.0.0.251:5353: This specifies the multicast address which serves as the 

destination of the output stream. 
 

We explore processing and evaluate computation time for two types of filters. Below are 
the flowchart of the processing workflow for each of them. The video processing code is 
written by making use of the Golang implementation of FFmpeg provided here: 
https://github.com/asticode/go-astiav.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

https://github.com/asticode/go-astiav


 
 

A.​ FFmpeg-based filters 

 
Fig: Flowchart of our workflow for adding FFmpeg-based filters 

 
 

 



B.​ Augmented Reality (AR) filters 
 

 
Fig: Flowchart of our workflow for adding Augmented Reality (AR) filters 



In both the above approaches, we perform a real-time computation of the processing time 
for each frame (more details in the experiments section). 

 
We also explored volumetric video datasets. As part of the exploration, we stumbled 
across a comprehensive and recent dataset for full scene volumetric videos - 
https://cuhksz-inml.github.io/full_scene_volumetric_video_dataset/factsfigures.html. The 
dataset was massive, containing 500 GBs of volumetric videos, and captured using  
Azure Kinect RGBD cameras. However, due to limited documentation, huge dataset size 
as well as limited working knowledge in concepts like body poses, point clouds, etc. we 
decided to avoid putting in further efforts in it.  
 
We also tried exploring Jetson benchmark suites which work on a video dataset for a 
variety of tasks like object detection, segmentation, etc.. However, all popular benchmark 
suites (https://github.com/dusty-nv/jetson-inference) required a more recent Jetpack 
version, and the machine present in the lab was running out-dated software. We explored 
ways to upgrade the software stack, but it posed some challenges (discussed later). 

3.​Experiments 
Let us first see how the WebRTC connection is established between two clients with the 
help of a signalling server. 
 

A.​ Signalling Server: 
 

Starting server on :8080​
Received message from client 0: join​
Received message from client 1: join​
Writing to client 0​
Received message from client 0: offer​
Writing to client 1​
Received message from client 0: iceCandidate​
Writing to client 1​
Received message from client 0: iceCandidate​
Writing to client 1​
Received message from client 0: iceCandidate​
Writing to client 1​
Received message from client 1: answer​
Writing to client 0​
Received message from client 1: iceCandidate​

https://cuhksz-inml.github.io/full_scene_volumetric_video_dataset/factsfigures.html
https://github.com/dusty-nv/jetson-inference


Writing to client 0 

Fig: Logs on the signalling server 
 

B.​ Client 1: 
 

Connected to the server​
Message from server: join​
New ICE candidate: {candidate:2035536029 1 udp 2130706431 10.0.0.180 

47020 typ host 0xc0002b8090 0xc00029c12a <nil>}​
New ICE candidate: {candidate:346383794 1 udp 2130706431 

2601:c2:b81:8d0::6568 34551 typ host 0xc0002b8130 0xc00029c17a <nil>}​
Message from server: answer​
Setting remote description with answer.​
Message from server: iceCandidate​
Received ICE Candidate: candidate:2035536029 1 udp 2130706431 

10.0.0.180 48191 typ host​
Peer connection not created yet. Returning...​
Message from server: iceCandidate​
Message from server: iceCandidate​
Received ICE Candidate: candidate:1557957486 1 udp 2130706431 

2601:c2:b81:8d0:db96:7395:1aac:3c80 44235 typ host 

​
Successfully established a WebRTC connection between clients​
Writing to tracks​
Connection State has changed: checking​
New ICE candidate: {candidate:1046940177 1 udp 1694498815 

73.237.244.77 36566 typ srflx raddr 0.0.0.0 rport 36566 0xc0005b6fa0 

0xc00058aeaa <nil>}​
Message from server: iceCandidate​
Received ICE Candidate: candidate:1046940177 1 udp 1694498815 

73.237.244.77 40679 typ srflx raddr 0.0.0.0 rport 40679​
ICE Candidate added successfully.​
​
Connection State has changed: connected​
Successfully connected! 

 
 

C.​ Client 2 
 



Connected to the server​
Message from server: offer​
Message from server: iceCandidate​
Received ICE Candidate: candidate:2035536029 1 udp 2130706431 

10.0.0.180 47020 typ host​
Peer connection not created yet. Returning...​
Received offer​
Connection State has changed: checking​
Successfully established a WebRTC connection between clients​
Writing to tracks​
New ICE candidate: {candidate:2035536029 1 udp 2130706431 10.0.0.180 

48191 typ host 0xc000038110 0xc00001419a <nil>}​
ICE Candidate added successfully.​
Connection State has changed: connected​
Successfully connected! 

 
Once a successful WebRTC connection is established, the clients can begin to stream 
videos over the added tracks. 

 
​ Next, let us analyze how well FFmpeg and AR-based filters perform. 

A.​ FFmpeg-based filters: 
The FFmpeg based filters were given the task to increase the brightness by 50% 
and vertically flip the image frame. 
 

Original (Before) Processed (After) 

  

 
 



 
B.​ Augmented Reality (AR) filters: 

We experimented with some basic AR filters: if the size of the eye (eye was open) 
and mouth increased by a threshold, a cartoon image was overlaid on top of each 
part. The overlaid cartoon image size would be determined by the extent to which 
each part is open. For eg: a larger filter image would be added on an enlarged eye 
compared to a normally open eye. 

 
 

Original (Before) Processed (After) 
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Next, let us look at the computation complexity graphs for each of them.  
 

A.​ FFmpeg-based filters: 
​ ​  

Complexity (decoding, adding filters, 
encoding) per frame  

Complexity of just adding filters per frame 

  
 

 
B.​ AR-based filters: 

​ ​  

Complexity (decoding, adding filters, 
encoding) per frame  

Complexity of just adding filters per frame 

  
 
 

The above plots show that the processing time for AR-based filters is higher than the  
FFmpeg-based filters. 
 



Next, to analyse the task from a different perspective - if hardware acceleration helps in 
any way? We, thus, decided to run the experiments on a machine with hardware 
acceleration support. We tried to run the experiments on a Nvidia Jetson TX1 available in 
the lab. However, after putting in a great amount of effort, we were unsuccessful in 
getting results. The issues we faced here are discussed in the challenges section.  
 
Jetson device statistics: 

Jetson: 4 CPU cores ARMv8 Processor rev 1​
Device 0: "NVIDIA Tegra X1"​
  CUDA Driver Version / Runtime Version          10.0 / 10.0​
  CUDA Capability Major/Minor version number:    5.3​
  Total amount of global memory:                 3962 MBytes 

(4154626048 bytes)​
  ( 2) Multiprocessors, (128) CUDA Cores/MP:     256 CUDA Cores​
  GPU Max Clock rate:                            998 MHz (1.00 GHz)​
  Memory Clock rate:                             1600 Mhz​
  Memory Bus Width:                              64-bit​
  L2 Cache Size:                                 262144 bytes​
  Maximum Texture Dimension Size (x,y,z)         1D=(65536), 

2D=(65536, 65536), 3D=(4096, 4096, 4096)​
  Maximum Layered 1D Texture Size, (num) layers  1D=(16384), 2048 

layers​
  Maximum Layered 2D Texture Size, (num) layers  2D=(16384, 16384), 

2048 layers​
  Total amount of constant memory:               65536 bytes​
  Total amount of shared memory per block:       49152 bytes​
  Total number of registers available per block: 32768​
  Warp size:                                     32​
  Maximum number of threads per multiprocessor:  2048​
  Maximum number of threads per block:           1024​
  Max dimension size of a thread block (x,y,z): (1024, 1024, 64)​
  Max dimension size of a grid size    (x,y,z): (2147483647, 65535, 

65535)​
  Maximum memory pitch:                          2147483647 bytes​
  Texture alignment:                             512 bytes​
  Concurrent copy and kernel execution:          Yes with 1 copy 

engine(s)​
  Run time limit on kernels:                     Yes​
  Integrated GPU sharing Host Memory:            Yes​



  Support host page-locked memory mapping:       Yes​
  Alignment requirement for Surfaces:            Yes​
  Device has ECC support:                        Disabled​
  Device supports Unified Addressing (UVA):      Yes​
  Device supports Compute Preemption:            No​
  Supports Cooperative Kernel Launch:            No​
  Supports MultiDevice Co-op Kernel Launch:      No​
  Device PCI Domain ID / Bus ID / location ID:   0 / 0 / 0​
  Compute Mode:​
     < Default (multiple host threads can use ::cudaSetDevice() with 

device simultaneously) > 

 

4.​Challenges 
●​ The initial few challenges were in setting up the stream processing pipeline using 

ffmpeg and ensuring proper format of the frames for processing 
○​ https://github.com/asticode/go-astiav/issues/77 
○​ https://github.com/asticode/go-astiav/issues/90  

●​ One of the major challenges in this project was to work with Google’s Mediapipe 
library. We were able to successfully run experiments on my local machine. But, 
Mediapipe’s limited (or close to no) support for Jetson posed a major hurdle.  

○​ https://github.com/google-ai-edge/mediapipe/issues/5736 
■​ https://github.com/google-ai-edge/mediapipe/issues/4017 
■​ https://github.com/google-ai-edge/mediapipe/issues/5344 
■​ https://github.com/google-ai-edge/mediapipe/issues/3353 
■​ https://github.com/google-ai-edge/mediapipe/issues/1651 
■​ https://github.com/google-ai-edge/mediapipe/issues/1344 
■​ https://github.com/google-ai-edge/mediapipe/issues/5736  

○​ Apparently, the legacy solution for Mediapipe which is compatible with 
Jetson TX1 requires Jetpack 4.6 and higher. However, upgrading the 
jetpack version also posed hiccups.   

●​ Another critical challenge was to upgrade the outdated Jetpack version on the 
Jetson machine. However, today, there is very little support and documentation of 
upgrading Jetpack on Jetson TX1 machines.  

 

https://github.com/asticode/go-astiav/issues/77
https://github.com/asticode/go-astiav/issues/90
https://github.com/google-ai-edge/mediapipe/issues/5736
https://github.com/google-ai-edge/mediapipe/issues/4017
https://github.com/google-ai-edge/mediapipe/issues/5344
https://github.com/google-ai-edge/mediapipe/issues/3353
https://github.com/google-ai-edge/mediapipe/issues/1651
https://github.com/google-ai-edge/mediapipe/issues/1344
https://github.com/google-ai-edge/mediapipe/issues/5736


5.​Future Work and Conclusion   
The contributions made as part of this project include: 

●​ Developing an end-to-end video conferencing platform with WebRTC 
●​ Designing and building the processing pipeline for video frames. 
●​ Estimating the computation complexity for processing different filters 
●​ Exploration of volumetric video datasets 
●​ Exploring if hardware acceleration some advantage (though, unsuccessful due to 

resource limitations) 
 

In the future, this work can be extended by making use of the video platform and 
performing a fine-grained analysis of AR processing on edge devices. The experiments 
could be run on more sophisticated hardware stack in the future. The problem could be 
explored from other perspectives like energy consumption and battery drain analysis.  
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